def __init__(self, job_config, use_pretrain, tokenizer, cache_dir, device,
                 write_log, summary_writer):
        self.job_config = job_config

        if not use_pretrain:
            model_config = self.job_config.get_model_config()
            bert_config = BertConfig(**model_config)
            bert_config.vocab_size = len(tokenizer.vocab)

            self.bert_encoder = BertModel(bert_config)
        # Use pretrained bert weights
        else:
            self.bert_encoder = BertModel.from_pretrained(
                self.job_config.get_model_file_type(), cache_dir=cache_dir)
            bert_config = self.bert_encoder.config

        self.network = MTLRouting(self.bert_encoder,
                                  write_log=write_log,
                                  summary_writer=summary_writer)

        #config_data=self.config['data']

        # Pretrain Dataset
        self.network.register_batch(BatchType.PRETRAIN_BATCH,
                                    "pretrain_dataset",
                                    loss_calculation=BertPretrainingLoss(
                                        self.bert_encoder, bert_config))

        self.device = device
Beispiel #2
0
def main():
    parser = make_arg_parser()
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cli": CLIProcessor,
    }

    num_labels_task = {
        "cli": 7,
    }

    # Check whether bert_model_or_config_file is a file or directory
    if os.path.isdir(args.bert_model_or_config_file):
        pretrained = True
        targets = [WEIGHTS_NAME, CONFIG_NAME, "tokenizer.pkl"]
        for t in targets:
            path = os.path.join(args.bert_model_or_config_file, t)
            if not os.path.exists(path):
                msg = "File '{}' not found".format(path)
                raise ValueError(msg)
        fp = os.path.join(args.bert_model_or_config_file, CONFIG_NAME)
        config = BertConfig(fp)
    else:
        pretrained = False
        config = BertConfig(args.bert_model_or_config_file)

    # What GPUs do we use?
    if args.num_gpus == -1:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        n_gpu = torch.cuda.device_count()
        device_ids = None
    else:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and args.num_gpus > 0 else "cpu")
        n_gpu = args.num_gpus
        if n_gpu > 1:
            device_ids = list(range(n_gpu))
    if args.local_rank != -1:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    # Check some other args
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    if not args.do_train and not args.do_eval and not args.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict` must be True."
        )

    # Seed RNGs
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare output directory
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    # Get training data
    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Make tokenizer
    if pretrained:
        fp = os.path.join(args.bert_model_or_config_file, "tokenizer.pkl")
        with open(fp, "rb") as f:
            tokenizer = pickle.load(f)
    else:
        tokenizer = CuneiformCharTokenizer(
            training_data=[x.text_a for x in train_examples])
        tokenizer.trim_vocab(config.min_freq)
        # Adapt vocab size in config
        config.vocab_size = len(tokenizer.vocab)
    print("Size of vocab: {}".format(len(tokenizer.vocab)))

    # Prepare model
    if pretrained:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model_or_config_file, num_labels=num_labels)
    else:
        model = BertForSequenceClassification(config, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model, device_ids=device_ids)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    # Get dev data
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

    # Prepare for training
    global_step = 0
    nb_tr_steps = 0
    total_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        # Prepare log file
        output_log_file = os.path.join(args.output_dir, "training_log.txt")
        with open(output_log_file, "w") as f:
            if args.do_eval:
                f.write("Steps\tTrainLoss\tValLoss\tValAccuracy\tValFScore\n")
            else:
                f.write("Steps\tTrainLoss\n")

        best_val_score = float("-inf")
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            avg_loss = tr_loss / nb_tr_examples
            total_tr_steps += nb_tr_steps
            log_data = [str(total_tr_steps), "{:.5f}".format(avg_loss)]

            # Validate
            if args.do_eval and (args.local_rank == -1
                                 or torch.distributed.get_rank() == 0):
                predictions, eval_loss, eval_accuracy, fscore = evaluate(
                    model, eval_dataloader, device)
                log_data.append("{:.5f}".format(eval_loss))
                log_data.append("{:.5f}".format(eval_accuracy))
                log_data.append("{:.5f}".format(fscore))
                # Check if score has improved
                if fscore > best_val_score:
                    best_val_score = fscore
                    save_model(model, tokenizer, args.output_dir)
            else:
                # If we can't validate, we save model at each epoch
                save_model(model, tokenizer, args.output_dir)

            # Log
            with open(output_log_file, "a") as f:
                f.write("\t".join(log_data) + "\n")

    # Load model
    if args.do_train:
        # Load model we just fine-tuned
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        output_tokenizer_file = os.path.join(args.output_dir, "tokenizer.pkl")
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
        with open(output_tokenizer_file, "rb") as f:
            tokenizer = pickle.load(f)
    else:
        # Load a model you fine-tuned previously
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model_or_config_file, num_labels=num_labels)
    model.to(device)

    # Evaluate model on validation data
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        predictions, eval_loss, eval_accuracy, fscore = evaluate(
            model, eval_dataloader, device)
        loss = avg_loss if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'eval_fscore': fscore,
            'global_step': global_step,
            'loss': loss
        }

        # Write evaluation results
        output_eval_file = os.path.join(args.output_dir, "dev_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # Write predictions
        output_pred_file = os.path.join(args.output_dir, "dev_pred.txt")
        with open(output_pred_file, "w", encoding="utf-8") as writer:
            for label_id in predictions:
                label = label_list[label_id]
                writer.write(label + "\n")

    # Predict labels of test set
    if args.do_predict:
        test_examples = processor.get_test_examples(args.data_dir)
        test_features = convert_examples_to_features(test_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)

        logger.info("***** Running prediction *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        predictions = predict(model, test_dataloader, device)

        # Write predictions
        output_pred_file = os.path.join(args.output_dir, "test_pred.txt")
        with open(output_pred_file, "w", encoding="utf-8") as writer:
            for label_id in predictions:
                label = label_list[label_id]
                writer.write(label + "\n")
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--model",
        default="bert",
        type=str,
        required=True,
        help="The model used for pretraining. Currently support bert or electra"
    )
    parser.add_argument(
        "--config_file",
        "--cf",
        help="pointer to the configuration file of the experiment",
        type=str,
        required=True)
    parser.add_argument(
        "--config_file_path",
        default=None,
        type=str,
        required=True,
        help="The blob storage directory where config file is located.")
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--checkpoint_file",
        default=None,
        type=str,
        help=
        "The path to checkpoint file which will be used to initializ the model parameters."
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--optimize_on_cpu',
        default=False,
        action='store_true',
        help=
        "Whether to perform optimization and keep the optimizer averages on CPU"
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=128,
        help=
        'Loss scaling, positive power of 2 values can improve fp16 convergence.'
    )
    parser.add_argument('--step_per_log',
                        type=int,
                        default=5,
                        help='Number of updates steps to log metrics.')
    parser.add_argument(
        "--process_count_per_node",
        default=1,
        type=int,
        help="Total number of process count to launch per node.")

    args = parser.parse_args()

    #run = Run.get_context()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "qqp": QQPProcessor,
        "qnli": QNLIProcessor,
        "sst2": SST2Processor,
        "stsb": STSBProcessor,
        "rte": RTEProcessor,
    }

    comm = DistributedCommunicator(
        accumulation_step=args.gradient_accumulation_steps)
    rank = comm.rank
    local_rank = comm.local_rank
    world_size = comm.world_size
    is_master = rank == 0

    # Prepare logger
    job_id = rutils.get_current_time()
    logger = rutils.FileLogging('%s_bert_fine_tune_%d' % (job_id, local_rank))
    logger.info("job id: %s" % job_id)
    logger.info(rutils.parser_args_to_dict(args))

    logger.info(
        "world size: {}, local rank: {}, global rank: {}, fp16: {}".format(
            world_size, local_rank, rank, args.fp16))

    torch.cuda.set_device(local_rank)
    device = torch.device("cuda", local_rank)
    hostname = socket.gethostname()
    n_gpu = torch.cuda.device_count()
    logger.info("host: {}, device: {}, n_gpu: {}".format(
        hostname, device, n_gpu))

    # extract config
    job_config = BertJobConfiguration(
        config_file_path=os.path.join(args.config_file_path, args.config_file))

    #if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
    #    raise ValueError("Output directory () already exists and is not empty.")
    #os.makedirs(args.output_dir, exist_ok=True)
    output_model_file = os.path.join(args.output_dir,
                                     job_id + "_pytorch_model_fine_tune.bin")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    if local_rank == -1:
        args.train_batch_size = int(args.train_batch_size /
                                    args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    task_name = args.task_name.lower()

    is_master = (local_rank == -1 or rank == 0)
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(job_config.get_token_file_type(),
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)
    num_labels = len(processor.get_labels())

    # Prepare model
    model_name = args.model
    model_config = job_config.get_model_config()
    if model_name == 'bert':
        config = BertConfig(**model_config)
        config.vocab_size = len(tokenizer.vocab)
        model = BertForSequenceClassification(config, num_labels=num_labels)
    elif model_name == 'electra':
        config = ElectraConfig(**model_config)
        config.vocab_size = len(tokenizer.vocab)
        model = ElectraForSequenceClassification(config, num_labels=num_labels)

    #model = BertForSequenceClassification.from_pretrained(args.bert_model,
    #            cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(local_rank), num_labels=num_labels)

    # Load checkpoint if specified
    #import pdb;pdb.set_trace()
    if os.path.exists(str(args.checkpoint_file)):
        state_dict = torch.load(args.checkpoint_file)
        if model_name == 'bert':
            model.bert.load_state_dict(state_dict)
        elif model_name == 'electra':
            model.electra.load_state_dict(state_dict)
        logger.info("Set the model parameter from the checkpoint %s" %
                    args.checkpoint_file)

    if args.fp16:
        model.half()
    model.to(device)
    comm.register_model(model, args.fp16)

    if args.do_train:

        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        t_total = num_train_steps // world_size

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to run this."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=t_total)
        if is_master:
            logger.info('lr: {}'.format(np.float(args.learning_rate)))

        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, logger)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d" % (len(train_examples)))
        logger.info("  Batch size = %d" % (args.train_batch_size))
        logger.info("  Num steps = %d" % (num_train_steps))
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if local_rank != -1 and world_size > 1:
            train_sampler = DistributedSampler(train_data)
        else:
            train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        global_step, tr_loss = 0, 0
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for _, batch in enumerate(tqdm(train_dataloader,
                                           desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                loss = loss / args.gradient_accumulation_steps
                loss.backward()
                global_step += 1
                tr_loss += loss.item()
                if comm.synchronize():
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    model.zero_grad()
                if is_master and (global_step + 1) % args.step_per_log == 0:
                    logger.info('train_loss: {}'.format(
                        np.float(tr_loss / args.step_per_log)))
                    tr_loss = 0
        if is_master:
            # Save a trained model
            torch.save(model.state_dict(), output_model_file)
            logger.info('model checkpoint saved at %s' % output_model_file)

    if args.do_eval and is_master:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, logger)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d" % len(eval_examples))
        logger.info("  Batch size = %d" % args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)
            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s" % (key, str(result[key])))
Beispiel #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--bert_model_or_config_file",
        default=None,
        type=str,
        required=True,
        help=
        "Directory containing pre-trained BERT model or path of configuration file (if no pre-training)."
    )
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--num_gpus",
        type=int,
        default=-1,
        help="Num GPUs to use for training (0 for none, -1 for all available)")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    # Check whether bert_model_or_config_file is a file or directory
    if os.path.isdir(args.bert_model_or_config_file):
        pretrained = True
        targets = [WEIGHTS_NAME, CONFIG_NAME, "tokenizer.pkl"]
        for t in targets:
            path = os.path.join(args.bert_model_or_config_file, t)
            if not os.path.exists(path):
                msg = "File '{}' not found".format(path)
                raise ValueError(msg)
        fp = os.path.join(args.bert_model_or_config_file, CONFIG_NAME)
        config = BertConfig(fp)
    else:
        pretrained = False
        config = BertConfig(args.bert_model_or_config_file)

    # What GPUs do we use?
    if args.num_gpus == -1:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        n_gpu = torch.cuda.device_count()
        device_ids = None
    else:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and args.num_gpus > 0 else "cpu")
        n_gpu = args.num_gpus
        if n_gpu > 1:
            device_ids = list(range(n_gpu))
    if args.local_rank != -1:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    # Check some other args
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    # Seed RNGs
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare output directory
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Make tokenizer
    if pretrained:
        fp = os.path.join(args.bert_model_or_config_file, "tokenizer.pkl")
        with open(fp, "rb") as f:
            tokenizer = pickle.load(f)
    else:
        training_data = [
            line.strip() for line in open(args.train_file).readlines()
        ]
        tokenizer = CuneiformCharTokenizer(training_data=training_data)
        tokenizer.trim_vocab(config.min_freq)
        # Adapt vocab size in config
        config.vocab_size = len(tokenizer.vocab)
    print("Size of vocab: {}".format(len(tokenizer.vocab)))

    # Get training data
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    if pretrained:
        model = BertForMaskedLM.from_pretrained(args.bert_model_or_config_file)
    else:
        model = BertForMaskedLM(config)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model, device_ids=device_ids)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    # Prepare training log
    output_log_file = os.path.join(args.output_dir, "training_log.txt")
    with open(output_log_file, "w") as f:
        f.write("Steps\tTrainLoss\n")

    # Start training
    global_step = 0
    total_tr_steps = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            #TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            avg_loss = tr_loss / nb_tr_examples

            # Update training log
            total_tr_steps += nb_tr_steps
            log_data = [str(total_tr_steps), "{:.5f}".format(avg_loss)]
            with open(output_log_file, "a") as f:
                f.write("\t".join(log_data) + "\n")

            # Save model
            logger.info("** ** * Saving model ** ** * ")
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
            torch.save(model_to_save.state_dict(), output_model_file)
            output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
            with open(output_config_file, 'w') as f:
                f.write(model_to_save.config.to_json_string())
            fn = os.path.join(args.output_dir, "tokenizer.pkl")
            with open(fn, "wb") as f:
                pickle.dump(tokenizer, f)