Beispiel #1
0
    def initialize(self, ctx):
        properties = ctx.system_properties
        MODEL_DIR = properties.get("model_dir")
        self.device = torch.device("cuda:" +
                                   str(properties.get("gpu_id")) if torch.cuda.
                                   is_available() else "cpu")
        self.labelencoder = preprocessing.LabelEncoder()
        self.labelencoder.classes_ = np.load(
            os.path.join(MODEL_DIR, 'classes.npy'))
        config = BertConfig(os.path.join(MODEL_DIR, 'bert_config.json'))
        self.model = BertForSequenceClassification(
            config, num_labels=len(self.labelencoder.classes_))
        self.model.load_state_dict(
            torch.load(os.path.join(MODEL_DIR, 'pytorch_model.bin'),
                       map_location="cpu"))
        self.model.to(self.device)
        self.model.eval()

        self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        self.softmax = torch.nn.Softmax(dim=-1)
        # self.batch_size = batch_size

        logger.debug(
            'Transformer model from path {0} loaded successfully'.format(
                MODEL_DIR))
        self.manifest = ctx.manifest
        self.initialized = True
Beispiel #2
0
 def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
     model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
     loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
     logits = model(input_ids, token_type_ids, input_mask)
     outputs = {
         "loss": loss,
         "logits": logits,
     }
     return outputs
Beispiel #3
0
def test():
    # 配置文件
    cf = Config('./config.yaml')
    # 有GPU用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 测试数据
    test_data = NewsDataset("./data/cnews_final_test.txt", cf.max_seq_len)
    test_dataloader = DataLoader(test_data,
                                 batch_size=cf.batch_size,
                                 shuffle=True)

    # 模型
    config = BertConfig("./output/pytorch_bert_config.json")
    model = BertForSequenceClassification(config, num_labels=cf.num_labels)
    model.load_state_dict(torch.load("./output/pytorch_model.bin"))

    # 把模型放到指定设备
    model.to(device)

    # 让模型并行化运算
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # 训练
    start_time = time.time()

    data_len = len(test_dataloader)

    model.eval()
    y_pred = np.array([])
    y_test = np.array([])
    # for step,batch in enumerate(tqdm(test_dataloader,"batch",total=len(test_dataloader))):
    for step, batch in enumerate(test_dataloader):
        label_id = batch['label_id'].squeeze(1).to(device)
        word_ids = batch['word_ids'].to(device)
        segment_ids = batch['segment_ids'].to(device)
        word_mask = batch['word_mask'].to(device)

        loss = model(word_ids, segment_ids, word_mask, label_id)

        with torch.no_grad():
            pred = get_model_labels(model, word_ids, segment_ids, word_mask)
        y_pred = np.hstack((y_pred, pred))
        y_test = np.hstack((y_test, label_id.to("cpu").numpy()))

    # 评估
    print("Precision, Recall and F1-Score...")
    print(
        metrics.classification_report(y_test,
                                      y_pred,
                                      target_names=get_labels('./data/label')))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test, y_pred)
    print(cm)
Beispiel #4
0
 def create_bert_for_sequence_classification_attn(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
     # Disable attention dropout
     drop = config.attention_probs_dropout_prob
     config.attention_probs_dropout_prob = 0.0
     model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
     config.attention_probs_dropout_prob = drop
     loss, _ = model(input_ids, token_type_ids, input_mask, sequence_labels, return_att=True)
     logits, attn = model(input_ids, token_type_ids, input_mask, return_att=True)
     outputs = {
         "loss": loss,
         "logits": logits,
         "attn": attn,
     }
     return outputs
Beispiel #5
0
def get_trained_model(fine_tuned="bert_pytorch.bin",
                      device=torch.device('cuda')):
    model = None
    y_columns = [
        'toxic', "severe_toxic", "obscene", "threat", "insult", "identity_hate"
    ]
    pretrain_data_folder = PRETRAIND_PICKLE_AND_MORE

    if not os.path.exists(pretrain_data_folder + "/" + fine_tuned):
        pretrain_data_folder = '/home/working'

    if os.path.exists(pretrain_data_folder + "/" + fine_tuned):
        output_model_file = pretrain_data_folder + "/" + fine_tuned
        bert_config = BertConfig.from_json_file(pretrain_data_folder +
                                                "/bert_config.json")

        # Run validation
        # The following 2 lines are not needed but show how to download the model for prediction
        model = BertForSequenceClassification(bert_config,
                                              num_labels=len(y_columns))
        model.load_state_dict(torch.load(output_model_file))
        model.to(device)

    return model
Beispiel #6
0
def main():
    test_df = pd.read_csv(TEST_PATH)

    with timer('preprocessing text'):
        test_df['comment_text'] = test_df['comment_text'].astype(str)
        test_df = test_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                  cache_dir=None,
                                                  do_lower_case=True)
        X_text = convert_lines(test_df["comment_text"].fillna("DUMMY_VALUE"),
                               max_len, tokenizer)

    with timer('train'):
        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model = model.to(device)

        test_dataset = torch.utils.data.TensorDataset(
            torch.tensor(X_text, dtype=torch.long))
        test_loader = torch.utils.data.DataLoader(test_dataset,
                                                  batch_size=batch_size * 2,
                                                  shuffle=False)

        test_pred = inference(model, test_loader, device, n_labels)
        del model
        gc.collect()
        torch.cuda.empty_cache()

    submission = pd.DataFrame.from_dict({
        'id': test_df['id'],
        'prediction': test_pred.reshape(-1)
    })
    submission.to_csv('submission.csv', index=False)
    LOGGER.info(submission.head())
def main():
    train_df = pd.read_csv(TRAIN_PATH)
    train_df['male'] = np.load(
        "../input/identity-column-data/male_labeled.npy")
    train_df['female'] = np.load(
        "../input/identity-column-data/female_labeled.npy")
    train_df['homosexual_gay_or_lesbian'] = np.load(
        "../input/identity-column-data/homosexual_gay_or_lesbian_labeled.npy")
    train_df['christian'] = np.load(
        "../input/identity-column-data/christian_labeled.npy")
    train_df['jewish'] = np.load(
        "../input/identity-column-data/jewish_labeled.npy")
    train_df['muslim'] = np.load(
        "../input/identity-column-data/muslim_labeled.npy")
    train_df['black'] = np.load(
        "../input/identity-column-data/black_labeled.npy")
    train_df['white'] = np.load(
        "../input/identity-column-data/white_labeled.npy")
    train_df['psychiatric_or_mental_illness'] = np.load(
        "../input/identity-column-data/psychiatric_or_mental_illness_labeled.npy"
    )
    fold_df = pd.read_csv(FOLD_PATH)

    # y = np.where(train_df['target'] >= 0.5, 1, 0)
    y = train_df['target'].values
    y_aux = train_df[AUX_COLUMNS].values

    identity_columns_new = []
    for column in identity_columns + ['target']:
        train_df[column + "_bin"] = np.where(train_df[column] >= 0.5, True,
                                             False)
        if column != "target":
            identity_columns_new.append(column + "_bin")

    # Overall
    weights = np.ones((len(train_df), )) / 4
    # Subgroup
    weights += (train_df[identity_columns].fillna(0).values >= 0.5).sum(
        axis=1).astype(bool).astype(np.int) / 4
    # Background Positive, Subgroup Negative
    weights += (
        ((train_df["target"].values >= 0.5).astype(bool).astype(np.int) +
         (1 - (train_df[identity_columns].fillna(0).values >= 0.5).sum(
             axis=1).astype(bool).astype(np.int))) > 1).astype(bool).astype(
                 np.int) / 4
    # Background Negative, Subgroup Positive
    weights += (
        ((train_df["target"].values < 0.5).astype(bool).astype(np.int) +
         (train_df[identity_columns].fillna(0).values >= 0.5).sum(
             axis=1).astype(bool).astype(np.int)) > 1).astype(bool).astype(
                 np.int) / 4
    loss_weight = 0.5

    with timer('preprocessing text'):
        # df["comment_text"] = [analyzer_embed(text) for text in df["comment_text"]]
        train_df['comment_text'] = train_df['comment_text'].astype(str)
        train_df = train_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                  cache_dir=None,
                                                  do_lower_case=True)
        X_text = convert_lines_head_tail(
            train_df["comment_text"].fillna("DUMMY_VALUE"), max_len, head_len,
            tokenizer)
        del tokenizer
        gc.collect()

    LOGGER.info(f"X_text {X_text.shape}")

    with timer('train'):
        train_index = fold_df.fold_id != fold_id
        valid_index = fold_df.fold_id == fold_id
        X_train, y_train, y_aux_train, w_train = X_text[train_index].astype(
            "int32"), y[train_index], y_aux[train_index], weights[train_index]
        X_val, y_val, y_aux_val, w_val = X_text[valid_index].astype("int32"), y[valid_index], y_aux[valid_index], \
                                         weights[
                                             valid_index]
        test_df = train_df[valid_index]
        del X_text, y, y_aux, weights, train_index, valid_index, train_df
        gc.collect()

        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model.zero_grad()
        model = model.to(device)

        y_train = np.concatenate(
            (y_train.reshape(-1, 1), w_train.reshape(-1, 1), y_aux_train),
            axis=1).astype("float32")
        y_val = np.concatenate(
            (y_val.reshape(-1, 1), w_val.reshape(-1, 1), y_aux_val),
            axis=1).astype("float32")

        train_dataset = torch.utils.data.TensorDataset(
            torch.tensor(X_train, dtype=torch.long),
            torch.tensor(y_train, dtype=torch.float32))
        valid = torch.utils.data.TensorDataset(
            torch.tensor(X_val, dtype=torch.long),
            torch.tensor(y_val, dtype=torch.float32))
        ran_sampler = torch.utils.data.RandomSampler(train_dataset)
        len_sampler = LenMatchBatchSampler(ran_sampler,
                                           batch_size=batch_size,
                                           drop_last=False)
        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_sampler=len_sampler)
        valid_loader = torch.utils.data.DataLoader(valid,
                                                   batch_size=batch_size * 2,
                                                   shuffle=False)
        LOGGER.info(f"done data loader setup")

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        num_train_optimization_steps = int(epochs * len(X_train) / batch_size /
                                           accumulation_steps)
        total_step = int(epochs * len(X_train) / batch_size)

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=base_lr,
                             warmup=0.005,
                             t_total=num_train_optimization_steps)
        LOGGER.info(f"done optimizer loader setup")

        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O1",
                                          verbosity=0)
        # criterion = torch.nn.BCEWithLogitsLoss().to(device)
        criterion = CustomLoss(loss_weight).to(device)
        LOGGER.info(f"done amp setup")

        for epoch in range(1, epochs + 1):
            LOGGER.info(f"Starting {epoch} epoch...")
            LOGGER.info(f"length {len(X_train)} train {len(X_val)} train...")
            if epoch == 1:
                for param_group in optimizer.param_groups:
                    param_group['lr'] = base_lr * gammas[1]
            tr_loss, train_losses = train_one_epoch(model,
                                                    train_loader,
                                                    criterion,
                                                    optimizer,
                                                    device,
                                                    accumulation_steps,
                                                    total_step,
                                                    n_labels,
                                                    base_lr,
                                                    gamma=gammas[2 * epoch])
            LOGGER.info(f'Mean train loss: {round(tr_loss,5)}')

            torch.save(model.state_dict(),
                       '{}_epoch{}_fold{}.pth'.format(exp, epoch, fold_id))

            valid_loss, oof_pred = validate(model, valid_loader, criterion,
                                            device, n_labels)
            LOGGER.info(f'Mean valid loss: {round(valid_loss,5)}')

            if epochs > 1:
                test_df_cp = test_df.copy()
                test_df_cp["pred"] = oof_pred[:, 0]
                test_df_cp = convert_dataframe_to_bool(test_df_cp)
                bias_metrics_df = compute_bias_metrics_for_model(
                    test_df_cp, identity_columns)
                LOGGER.info(bias_metrics_df)

                score = get_final_metric(bias_metrics_df,
                                         calculate_overall_auc(test_df_cp))
                LOGGER.info(f'score is {score}')

        del model
        gc.collect()
        torch.cuda.empty_cache()

    test_df["pred"] = oof_pred[:, 0]
    test_df = convert_dataframe_to_bool(test_df)
    bias_metrics_df = compute_bias_metrics_for_model(test_df, identity_columns)
    LOGGER.info(bias_metrics_df)

    score = get_final_metric(bias_metrics_df, calculate_overall_auc(test_df))
    LOGGER.info(f'final score is {score}')

    test_df.to_csv("oof.csv", index=False)

    xs = list(range(1, len(train_losses) + 1))
    plt.plot(xs, train_losses, label='Train loss')
    plt.legend()
    plt.xticks(xs)
    plt.xlabel('Iter')
    plt.savefig("loss.png")
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "arg": ArgProcessor,
    }

    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
        # "arg": 2,
        "arg": 3,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    model_state_dict = torch.load('models/pytorch_model.bin')
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(
            args.local_rank))
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, state_dict=model_state_dict, num_labels=num_labels)
    # model.load_state_dict(torch.load('./models/pytorch_model1.bin', map_location=torch.device('cpu')))

    # cache_dir=cache_dir,

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        Path(str(Path.cwd() / "data" / "output")).mkdir(parents=True,
                                                        exist_ok=True)
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        # model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
        # WHY DO THEY DO THIS
        # MY TRAINED ONE
        model_state_dict = torch.load('./models/pytorch_model.bin')
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model,
            state_dict=model_state_dict,
            num_labels=num_labels)
        # INTERMDEDIATE IMHO TRAINED ONE - oh this one doesn't work.... why?!
        # model_state_dict = torch.load('./models/pytorch_model.bin', map_location=torch.device('cpu'))
        # model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict,
        #                                                       num_labels=num_labels)
    model.to(device)
    pred, prob = [], []
    gold = []
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)
            for a, b in zip(logits, label_ids):
                pred.append(np.argmax(a))
                gold.append(b)
            # prob.append(a)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }
        print(classification_report(gold, pred))
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            f = open('predictions.txt', 'w')
            for line1 in pred:
                f.write(str(line1) + '\n')
Beispiel #9
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path
    parser.add_argument("--output_model_path",
                        default="./models/classifier_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--output_lossfig_path",
                        default="./models/loss.png",
                        type=str,
                        help="Path of the output model.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=128,
                        help="Sequence length.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=5,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")
    parser.add_argument("--device",
                        type=str,
                        default='cpu',
                        help="Device use.")

    args = parser.parse_args()

    def set_seed(seed=7):
        random.seed(seed)
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True

    set_seed(args.seed)

    # 读取数据
    train = pd.read_csv('../data5k/train.tsv', encoding='utf-8', sep='\t')
    dev = pd.read_csv('../data5k/dev.tsv', encoding='utf-8', sep='\t')
    test = pd.read_csv('../data5k/test.tsv', encoding='utf-8', sep='\t')

    # Load bert vocabulary and tokenizer
    bert_config = BertConfig('bert_model/bert_config.json')
    BERT_MODEL_PATH = 'bert_model'
    bert_tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                                   cache_dir=None,
                                                   do_lower_case=False)

    # 产生输入数据
    processor = DataPrecessForSingleSentence(bert_tokenizer=bert_tokenizer)

    # train dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=train['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = train['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    train_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    train_sampler = RandomSampler(train_data)
    train_dataloder = DataLoader(dataset=train_data,
                                 sampler=train_sampler,
                                 batch_size=args.batch_size)

    # dev dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=dev['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = dev['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    dev_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    dev_sampler = RandomSampler(dev_data)
    dev_dataloder = DataLoader(dataset=dev_data,
                               sampler=dev_sampler,
                               batch_size=args.batch_size)

    # test dataset
    seqs, seq_masks, seq_segments = processor.get_input(
        sentences=test['text_a'].tolist(), max_seq_len=args.seq_length)
    labels = test['label'].tolist()
    t_seqs = torch.tensor(seqs, dtype=torch.long)
    t_seq_masks = torch.tensor(seq_masks, dtype=torch.long)
    t_seq_segments = torch.tensor(seq_segments, dtype=torch.long)
    t_labels = torch.tensor(labels, dtype=torch.long)
    test_data = TensorDataset(t_seqs, t_seq_masks, t_seq_segments, t_labels)
    test_sampler = RandomSampler(test_data)
    test_dataloder = DataLoader(dataset=test_data,
                                sampler=test_sampler,
                                batch_size=args.batch_size)

    # build classification model
    model = BertForSequenceClassification(bert_config, 2)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    if args.device == 'cpu':
        device = torch.device("cpu")
    else:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if torch.cuda.device_count() > 1:
            print("{} GPUs are available. Let's use them.".format(
                torch.cuda.device_count()))
            model = nn.DataParallel(model)
    model = model.to(device)

    # evaluation function
    def evaluate(args, is_test, metrics='Acc'):
        if is_test:
            dataset = test_dataloder
            instances_num = test.shape[0]
            print("The number of evaluation instances: ", instances_num)
        else:
            dataset = dev_dataloder
            instances_num = dev.shape[0]
            print("The number of evaluation instances: ", instances_num)

        correct = 0
        model.eval()
        # Confusion matrix.
        confusion = torch.zeros(2, 2, dtype=torch.long)

        for i, batch_data in enumerate(dataset):
            batch_data = tuple(t.to(device) for t in batch_data)
            batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels = batch_data
            with torch.no_grad():
                logits = model(batch_seqs,
                               batch_seq_masks,
                               batch_seq_segments,
                               labels=None)
            pred = logits.softmax(dim=1).argmax(dim=1)
            gold = batch_labels
            for j in range(pred.size()[0]):
                confusion[pred[j], gold[j]] += 1
            correct += torch.sum(pred == gold).item()

        if is_test:
            print("Confusion matrix:")
            print(confusion)
            print("Report precision, recall, and f1:")

        for i in range(confusion.size()[0]):
            p = confusion[i, i].item() / confusion[i, :].sum().item()
            r = confusion[i, i].item() / confusion[:, i].sum().item()
            f1 = 2 * p * r / (p + r)
            if i == 1:
                label_1_f1 = f1
            print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
        print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(
            correct / instances_num, correct, instances_num))
        if metrics == 'Acc':
            return correct / instances_num
        elif metrics == 'f1':
            return label_1_f1
        else:
            return correct / instances_num

    # training phase
    print("Start training.")
    instances_num = train.shape[0]
    batch_size = args.batch_size
    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    # 待优化的参数
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    # 存储每一个batch的loss
    all_loss = []
    all_acc = []
    total_loss = 0.0
    result = 0.0
    best_result = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for step, batch_data in enumerate(train_dataloder):
            batch_data = tuple(t.to(device) for t in batch_data)
            batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels = batch_data
            # 对标签进行onehot编码
            one_hot = torch.zeros(batch_labels.size(0), 2).long()
            '''one_hot_batch_labels = one_hot.scatter_(
                dim=1,
                index=torch.unsqueeze(batch_labels, dim=1),
                src=torch.ones(batch_labels.size(0), 2).long())

            
            logits = model(
                batch_seqs, batch_seq_masks, batch_seq_segments, labels=None)
            logits = logits.softmax(dim=1)
            loss_function = CrossEntropyLoss()
            loss = loss_function(logits, batch_labels)'''
            loss = model(batch_seqs, batch_seq_masks, batch_seq_segments,
                         batch_labels)
            loss.backward()
            total_loss += loss.item()
            if (step + 1) % 100 == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, step + 1, total_loss / 100))
                sys.stdout.flush()
                total_loss = 0.
            #print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, step+1, loss))
            optimizer.step()
            optimizer.zero_grad()

        all_loss.append(total_loss)
        total_loss = 0.
        print("Start evaluation on dev dataset.")
        result = evaluate(args, False)
        all_acc.append(result)
        if result > best_result:
            best_result = result
            torch.save(model, open(args.output_model_path, "wb"))
            #save_model(model, args.output_model_path)
        else:
            continue

        print("Start evaluation on test dataset.")
        evaluate(args, True)

    print('all_loss:', all_loss)
    print('all_acc:', all_acc)

    # Evaluation phase.
    print("Final evaluation on the test dataset.")
    model.load_state_dict(torch.load(args.output_model_path))
    evaluate(args, True)
    '''
        if lossf:
            lossf = 0.98 * lossf + 0.02 * loss.item()
        else:
            lossf = loss.item()
        tk0.set_postfix(loss=lossf)
        avg_loss += loss.item() / len(train_loader)
        avg_accuracy += torch.mean(
            ((torch.sigmoid(y_pred[:, 0]) > 0.5)
             == (y_batch[:, 0] > 0.5).to(device)).to(
                 torch.float)).item() / len(train_loader)
    tq.set_postfix(avg_loss=avg_loss, avg_accuracy=avg_accuracy)
    torch.save(model.state_dict(),
               output_model_file + '_epoch_' + str(epoch) + '.bin')

    #validate
    test_model = BertForSequenceClassification(bert_config,
                                               num_labels=len(y_columns))

    #paralleism
    test_model = nn.DataParallel(test_model)

    test_model.load_state_dict(
        torch.load(output_model_file + '_epoch_' + str(epoch) + '.bin'))
    test_model.to(device)
    for param in test_model.parameters():
        param.requires_grad = False
    test_model.eval()
    valid_preds = np.zeros((len(X_val)))
    print(valid_preds.size)
    valid = torch.utils.data.TensorDataset(
        torch.tensor(X_val, dtype=torch.long))
    valid_loader = torch.utils.data.DataLoader(valid,
Beispiel #11
0
]
y_columns = ['target']

train_df = train_df.drop(['comment_text'], axis=1)
train_df['target'] = (train_df['target'] >= 0.5).astype(float)

valid_df = valid_df.fillna(0)
valid_df = valid_df.drop(['comment_text'], axis=1)
valid_df['target'] = (valid_df['toxic'] == 1) | (valid_df['severe_toxic'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['obscene'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['threat'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['insult'] == 1)
valid_df['target'] = valid_df['target'] | (valid_df['identity_hate'] == 1)
valid_df['target'] = valid_df['target'].astype(float)

model = BertForSequenceClassification(bert_config, num_labels=1)
model.load_state_dict(torch.load("./datas/bert_pytorch.bin"))
model.to(device)
for param in model.parameters():
    param.requires_grad = False

X = train_seqs[:]
y = train_df['target'].values[:]
valid_X = valid_seqs[:]
valid_y = valid_df['target'].values[:]
X = np.concatenate((X, valid_X), axis=1)
y = np.concatenate((y, valid_y), axis=0)

train_dataset = torch.utils.data.TensorDataset(
    torch.tensor(X, dtype=torch.long), torch.tensor(y, dtype=torch.float))
            optimizer.zero_grad()
        if lossf:
            lossf = 0.98 * lossf + 0.02 * loss.item()
        else:
            lossf = loss.item()
        tk0.set_postfix(loss=lossf)
        avg_loss += loss.item() / len(train_loader)
        avg_accuracy += torch.mean(
            ((torch.sigmoid(y_pred[:, 0]) > 0.5)
             == (y_batch[:, 0] > 0.5).to(device)).to(
                 torch.float)).item() / len(train_loader)
    tq.set_postfix(avg_loss=avg_loss, avg_accuracy=avg_accuracy)

torch.save(model.state_dict(), output_model_file)

model = BertForSequenceClassification(bert_config,
                                      num_labels=len(target_column))
model.load_state_dict(torch.load(output_model_file))
model.to(device)
for param in model.parameters():
    param.requires_grad = False
model.eval()
valid_preds = np.zeros((len(X_Val)))
valid = torch.utils.data.TensorDataset(torch.tensor(X_val, dtype=torch.long))
valid_loader = torch.utils.data.DataLoader(valid, batch_size=32, shuffle=False)

tk0 = tqdm(valid_loader)
for i, (x_batch, ) in enumerate(tk0):
    pred = model(x_batch.to(device),
                 attention_mask=(x_batch > 0).to(device),
                 labels=None)
    valid_preds[i * 32:(i + 1) *
def main():
    # train_df = pd.read_csv(TRAIN_PATH).sample(frac=1.0, random_state=seed)
    # train_size = int(len(train_df) * 0.9)
    train_df = pd.read_csv(TRAIN_PATH).sample(train_size + valid_size, random_state=seed)
    LOGGER.info(f'data_size is {len(train_df)}')
    LOGGER.info(f'train_size is {train_size}')

    y = np.where(train_df['target'] >= 0.5, 1, 0)
    y_aux = train_df[AUX_COLUMNS].values

    identity_columns_new = []
    for column in identity_columns + ['target']:
        train_df[column + "_bin"] = np.where(train_df[column] >= 0.5, True, False)
        if column != "target":
            identity_columns_new.append(column + "_bin")

    sample_weights = np.ones(len(train_df), dtype=np.float32)
    sample_weights += train_df[identity_columns_new].sum(axis=1)
    sample_weights += train_df['target_bin'] * (~train_df[identity_columns_new]).sum(axis=1)
    sample_weights += (~train_df['target_bin']) * train_df[identity_columns_new].sum(axis=1) * 5
    sample_weights /= sample_weights.mean()

    with timer('preprocessing text'):
        # df["comment_text"] = [analyzer_embed(text) for text in df["comment_text"]]
        train_df['comment_text'] = train_df['comment_text'].astype(str)
        train_df = train_df.fillna(0)

    with timer('load embedding'):
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH, cache_dir=None, do_lower_case=True)
        X_text = convert_lines(train_df["comment_text"].fillna("DUMMY_VALUE"), max_len, tokenizer)

    test_df = train_df[train_size:]

    with timer('train'):
        X_train, y_train, y_aux_train, w_train = X_text[:train_size], y[:train_size], y_aux[
                                                                                      :train_size], sample_weights[
                                                                                                    :train_size]
        X_val, y_val, y_aux_val, w_val = X_text[train_size:], y[train_size:], y_aux[train_size:], sample_weights[
                                                                                                  train_size:]
        model = BertForSequenceClassification(bert_config, num_labels=n_labels)
        model.load_state_dict(torch.load(model_path))
        model.zero_grad()
        model = model.to(device)

        train_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train, dtype=torch.long),
                                                       torch.tensor(y_train, dtype=torch.float))
        valid = torch.utils.data.TensorDataset(torch.tensor(X_val, dtype=torch.long),
                                               torch.tensor(y_val, dtype=torch.float))
        train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
        valid_loader = torch.utils.data.DataLoader(valid, batch_size=batch_size * 2, shuffle=False)

        sample_weight_train = [w_train.values, np.ones_like(w_train)]
        sample_weight_val = [w_val.values, np.ones_like(w_val)]

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]

        num_train_optimization_steps = int(epochs * train_size / batch_size / accumulation_steps)
        total_step = int(epochs * train_size / batch_size)

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=2e-5*gamma,
                             warmup=0.05,
                             t_total=num_train_optimization_steps)

        model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
        criterion = torch.nn.BCEWithLogitsLoss().to(device)

        LOGGER.info(f"Starting 1 epoch...")
        tr_loss, train_losses = train_one_epoch(model, train_loader, criterion, optimizer, device,
                                                accumulation_steps, total_step, n_labels)
        LOGGER.info(f'Mean train loss: {round(tr_loss,5)}')

        torch.save(model.state_dict(), '{}_dic'.format(exp))

        valid_loss, oof_pred = validate(model, valid_loader, criterion, device, n_labels)
        del model
        gc.collect()
        torch.cuda.empty_cache()

    test_df["pred"] = oof_pred.reshape(-1)
    test_df = convert_dataframe_to_bool(test_df)
    bias_metrics_df = compute_bias_metrics_for_model(test_df, identity_columns)
    LOGGER.info(bias_metrics_df)

    score = get_final_metric(bias_metrics_df, calculate_overall_auc(test_df))
    LOGGER.info(f'final score is {score}')

    test_df.to_csv("oof.csv", index=False)

    xs = list(range(1, len(train_losses) + 1))
    plt.plot(xs, train_losses, label='Train loss');
    plt.legend();
    plt.xticks(xs);
    plt.xlabel('Iter')
    plt.savefig("loss.png")
Beispiel #14
0
## preprocessing
x_test = test_df["comment_text"].apply(lambda x: content_preprocessing(x))

## Tokenize and padding
BERT_MODEL_PATH = '../input/bert-pretrained-models/uncased_l-12_h-768_a-12/uncased_L-12_H-768_A-12/'
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH)
x_test = convert_lines(x_test,MAX_LEN,tokenizer)


x_test_cuda = torch.tensor(x_test, dtype=torch.long).cuda()
test_data = torch.utils.data.TensorDataset(x_test_cuda)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False)

## load fine-tuned model
bert_config = BertConfig('../input/bert-pretrained-models/uncased_l-12_h-768_a-12/uncased_L-12_H-768_A-12/bert_config.json')
net = BertForSequenceClassification(bert_config,num_labels=6)
net.load_state_dict(torch.load("../input/bert-model3/bert_pytorch_v3.pt"))
net.cuda()

## inference
net.eval()
result_1 = list()
with torch.no_grad():
  for (x_batch,) in test_loader:
    y_pred = net(x_batch)
    y_pred = torch.sigmoid(y_pred.cpu()).numpy()[:,0]
    result_1.extend(y_pred)
result_1 = np.array(result_1)


tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH,
                                          cache_dir=None,
                                          do_lower_case=True)
x_test = processed_data['x_test']
x_test = convert_lines(x_test.fillna("DUMMY_VALUE"), max_len, tokenizer)

del processed_data
del tokenizer
gc.collect()
print('Data Loaded!')

# inference & get feature
bert_config = BertConfig(config_path)
# remeber to change feature_num
model = BertForSequenceClassification(bert_config,
                                      num_labels=7,
                                      feature_num=50)

validate = True

for fold in [
        1,
]:
    print('Fold{}:'.format(fold))

    validate_idx = kfold[fold][1]
    train_idx = kfold[fold][0]
    #     train_idx = list(range(nrows))[:int(nrows*0.8)]
    #     validate_idx = list(range(nrows))[int(nrows*0.8):]

    model.load_state_dict(
Beispiel #16
0
def train_unfixed():
    # 配置文件
    cf = Config('./config.yaml')
    # 有GPU用GPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 训练数据
    train_data = NewsDataset("./data/cnews_final_train.txt", cf.max_seq_len)
    train_dataloader = DataLoader(train_data,
                                  batch_size=cf.batch_size,
                                  shuffle=True)
    # 测试数据
    test_data = NewsDataset("./data/cnews_final_test.txt", cf.max_seq_len)
    test_dataloader = DataLoader(test_data,
                                 batch_size=cf.batch_size,
                                 shuffle=True)

    # 模型
    config = BertConfig("./output/pytorch_bert_config.json")
    model = BertForSequenceClassification(config, num_labels=cf.num_labels)
    model.load_state_dict(torch.load("./output/pytorch_model.bin"))

    # 优化器用adam
    for param in model.parameters():
        param.requires_grad = True
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    num_train_optimization_steps = int(
        len(train_data) / cf.batch_size) * cf.epoch
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=cf.lr,
                         t_total=num_train_optimization_steps)

    # 把模型放到指定设备
    model.to(device)

    # 让模型并行化运算
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # 训练
    start_time = time.time()

    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1500  # 如果超过1500轮未提升,提前结束训练

    # 获取当前验证集acc
    model.eval()
    _, best_acc_val = evaluate(model, test_dataloader, device)

    flag = False
    model.train()
    for epoch_id in range(cf.epoch):
        print("Epoch %d" % epoch_id)
        for step, batch in enumerate(
                tqdm(train_dataloader,
                     desc="batch",
                     total=len(train_dataloader))):
            # for step,batch in enumerate(train_dataloader):

            label_id = batch['label_id'].squeeze(1).to(device)
            word_ids = batch['word_ids'].to(device)
            segment_ids = batch['segment_ids'].to(device)
            word_mask = batch['word_mask'].to(device)

            loss = model(word_ids, segment_ids, word_mask, label_id)

            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            total_batch += 1

            if total_batch % cf.print_per_batch == 0:
                model.eval()
                with torch.no_grad():
                    loss_train, acc_train = get_model_loss_acc(
                        model, word_ids, segment_ids, word_mask, label_id)
                loss_val, acc_val = evaluate(model, test_dataloader, device)

                if acc_val > best_acc_val:
                    # 保存最好结果
                    best_acc_val = acc_val
                    last_improved = total_batch

                    torch.save(model.state_dict(),
                               "./output/pytorch_model.bin")
                    with open("./output/pytorch_bert_config.json", 'w') as f:
                        f.write(model.config.to_json_string())

                    improved_str = "*"
                else:
                    improved_str = ""

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                      + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                print(
                    msg.format(total_batch, loss_train, acc_train, loss_val,
                               acc_val, time_dif, improved_str))

                model.train()

            if total_batch - last_improved > require_improvement:
                print("长时间未优化")
                flag = True
                break
        if flag:
            break
Beispiel #17
0
 def load_model(self, path_model, path_config):
     self.model = BertForSequenceClassification(BertConfig(path_config),
                                                num_labels=self.num_classes)
     self.model.load_state_dict(torch.load(path_model))
     self.__init_model()
Beispiel #18
0
                        M.append([1] * len(T[j]))
                    T = torch.tensor(seq_padding(T), dtype=torch.long)
                    M = torch.tensor(seq_padding(M), dtype=torch.long)
                    Sg = torch.zeros(*T.size(), dtype=torch.long)
                    logger.info(f'T:{T.size()}, M:{M.size()}, Sg:{Sg.size()}')
                    yield S, U, O, M, Sg, T
                    S, U, O, M, T = [], [], [], [], []
                    pre_obj_t = ''


eval_data = data_generator(log_data_dic)

kg_model_path = Path(data_dir) / 'kg_intent_model.pt'
config_path = Path(data_dir) / 'kg_intent_config.json'
config = BertConfig(str(config_path))
model = BertForSequenceClassification(config, num_labels=num_class)
model.load_state_dict(
    torch.load(kg_model_path,
               map_location='cpu' if not torch.cuda.is_available() else None))

# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
n_gpu = torch.cuda.device_count()
if n_gpu > 1:
    logger.info(f"let's use {n_gpu} gpu")

model.to(device)

if n_gpu > 1:
    model = nn.DataParallel(model)