Beispiel #1
0
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        # self.apply(self.init_weights)  # old versions of pytorch_transformers
        self.init_weights()
Beispiel #2
0
 def __init__(self, config, depth=None):
     super(CustomBertModel, self).__init__(config)
     self.depth = depth
     self.embeddings = BertEmbeddings(config)
     self.encoder = BertEncoder(config)
     self.cls = BertPreTrainingHeads(config)
     self.apply(self.init_weights)
Beispiel #3
0
    def __init__(self, config, args):
        super(BERT_MAG_model, self).__init__(config)
        self.newly_added_config = args
        if args.output_mode == 'regression':
            self.num_labels = 1
        #BertEncoder
        self.output_attentions = self.config.output_attentions
        self.output_hidden_states = self.config.output_hidden_states
        self.layer = nn.ModuleList([
            BertLayer(self.config)
            for _ in range(self.config.num_hidden_layers)
        ])
        self.MAG = MAG(self.config, args)
        self.MAG_all = nn.ModuleList([
            MAG(self.config, args)
            for _ in range(self.config.num_hidden_layers)
        ])

        # MultimodalBertModel
        self.embeddings = BertEmbeddings(self.config)
        self.pooler = BertPooler(self.config)

        # MultimodalBertForSequenceClassification
        self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
        self.dropout = nn.Dropout(args["hidden_dropout_prob"])
        self.apply(self.init_weights)
Beispiel #4
0
    def __init__(self, config):
        super(BertModel, self).__init__(config)

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)

        self.apply(self.init_weights)