Beispiel #1
0
    period=10,
    write_dir='.',
    warpx_file_prefix='Python_LaserAccelerationMR_plt',
    data_list=diag_field_list)

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       warpx_current_deposition_algo='esirkepov',
                       warpx_use_filter=0)

sim.add_species(electrons,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))

sim.add_laser(laser, injection_method=laser_antenna)

sim.add_diagnostic(field_diag1)
sim.add_diagnostic(part_diag1)

##########################
# simulation run
Beispiel #2
0
    write_dir='.',
    warpx_file_prefix='Python_restart_eb_plt')

checkpoint = picmi.Checkpoint(name='chkpoint',
                              period=diagnostic_intervals,
                              write_dir='.',
                              warpx_file_min_digits=5,
                              warpx_file_prefix=f'Python_restart_eb_chk')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       warpx_embedded_boundary=embedded_boundary,
                       verbose=True,
                       warpx_load_balance_intervals=40,
                       warpx_load_balance_efficiency_ratio_threshold=0.9)

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[1, 1, 1],
                                           grid=grid))

for arg in sys.argv:
    if arg.startswith("amr.restart"):
        restart_file_name = arg.split("=")[1]
        sim.amr_restart = restart_file_name
        sys.argv.remove(arg)

sim.add_diagnostic(field_diag)
sim.add_diagnostic(checkpoint)
Beispiel #3
0
field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = diagnostic_intervals,
    data_list = ['rho_electrons', 'rho_he_ions', 'phi'],
    write_dir = '.',
    warpx_file_prefix = 'Python_background_mcc_plt'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = DT,
    max_steps = max_steps,
    warpx_collisions=[mcc_electrons, mcc_ions]
)

sim.add_species(
    electrons,
    layout = picmi.GriddedLayout(
        n_macroparticle_per_cell=number_per_cell_each_dim, grid=grid
    )
)
sim.add_species(
    ions,
    layout = picmi.GriddedLayout(
        n_macroparticle_per_cell=number_per_cell_each_dim, grid=grid
    )
)
Beispiel #4
0
# Electromagnetic solver
solver = picmi.ElectromagneticSolver(grid=grid, method='Yee', cfl=0.7)

# Diagnostics
part_diag1 = picmi.ParticleDiagnostic(
    name='diag1',
    period=max_steps,
    species=[electrons],
    data_list=['ux', 'uy', 'uz'],
    write_dir='.',
    warpx_file_prefix='Python_plasma_lens_plt')

# Set up simulation
sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       particle_shape='linear',
                       warpx_serialize_initial_conditions=1,
                       warpx_do_dynamic_scheduling=0)

# Add plasma electrons
sim.add_species(electrons, layout=None)

# Add the plasma lenses
sim.add_applied_field(plasma_lenses)

# Add diagnostics
sim.add_diagnostic(part_diag1)

# Write input file that can be used to run with the compiled version
#sim.write_input_file(file_name = 'inputs_3d_picmi')
Beispiel #5
0
#################################

field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=10,
                                   data_list=[],
                                   write_dir='.',
                                   warpx_file_prefix='Python_collisionXZ_plt')

#################################
####### SIMULATION SETUP ########
#################################

sim = picmi.Simulation(
    solver=solver,
    max_steps=max_steps,
    verbose=verbose,
    warpx_serialize_initial_conditions=serialize_initial_conditions,
    warpx_collisions=[collision1, collision2, collision3])

sim.add_species(electrons,
                layout=picmi.PseudoRandomLayout(
                    n_macroparticles_per_cell=number_per_cell, grid=grid))
sim.add_species(ions,
                layout=picmi.PseudoRandomLayout(
                    n_macroparticles_per_cell=number_per_cell, grid=grid))

sim.add_diagnostic(field_diag)

#################################
##### SIMULATION EXECUTION ######
#################################
Beispiel #6
0
grid = picmi.Cartesian3DGrid(
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['periodic', 'periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
                       verbose=1,
                       warpx_plot_int=1,
                       warpx_current_deposition_algo='direct',
                       warpx_charge_deposition_algo='standard',
                       warpx_field_gathering_algo='standard',
                       warpx_particle_pusher_algo='boris')

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2, 2, 2],
                                           grid=grid))

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
sim.write_input_file(file_name='inputs_from_PICMI')

# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()
Beispiel #7
0
##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=1,
    data_list=['Ex', 'Ey', 'Ez', 'phi', 'rho'],
    write_dir='.',
    warpx_file_prefix='Python_ElectrostaticSphereEB_plt')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       time_step_size=dt,
                       max_steps=max_steps,
                       warpx_embedded_boundary=embedded_boundary,
                       warpx_field_gathering_algo='momentum-conserving')

sim.add_diagnostic(field_diag)

##########################
# simulation run
##########################

sim.step(max_steps)
Beispiel #8
0
                                     divE_cleaning=0)

# Diagnostics
diag_field_list = ['B', 'E', 'J', 'rho']
field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=200,
    data_list=diag_field_list,
    write_dir='.',
    warpx_file_prefix='Python_LaserAccelerationMR_plt')

# Set up simulation
sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       particle_shape='cubic',
                       warpx_use_filter=1,
                       warpx_serialize_ics=1)

# Add plasma electrons
sim.add_species(electrons,
                layout=picmi.GriddedLayout(grid=grid,
                                           n_macroparticle_per_cell=[1, 1, 1]))

# Add beam electrons
sim.add_species(beam,
                layout=picmi.PseudoRandomLayout(grid=grid,
                                                n_macroparticles=100))

# Add laser
sim.add_laser(laser, injection_method=laser_antenna)
Beispiel #9
0
field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = 10,
    data_list = ['phi'],
    write_dir = '.',
    warpx_file_prefix = f'Python_particle_attr_access_plt_{color}'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = dt,
    max_steps = max_steps,
    verbose = 1
)

sim.add_species(
    electrons,
    layout = picmi.GriddedLayout(
        n_macroparticle_per_cell=[0, 0], grid=grid
    )
)
sim.add_diagnostic(field_diag)

sim.initialize_inputs()
sim.initialize_warpx(mpi_comm=new_comm)

##########################
Beispiel #10
0
##########################

field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=4,
                                   data_list=['phi'],
                                   write_dir='.',
                                   warpx_file_prefix='Python_dirichletbc_plt')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       time_step_size=dt,
                       max_steps=max_steps,
                       particle_shape=None,
                       verbose=0)

sim.add_diagnostic(field_diag)

##########################
# simulation run
##########################

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name = 'inputs_from_PICMI')

# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step(max_steps)
    species=electrons,
    name = 'diag1',
    data_list=['previous_positions'],
    period = 10,
    write_dir = '.',
    warpx_file_prefix = 'Python_particle_reflection_plt'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = dt,
    max_steps = max_steps,
    # warpx_embedded_boundary=embedded_boundary,
    verbose = 1
)

sim.add_species(
    electrons,
    layout = picmi.GriddedLayout(
        n_macroparticle_per_cell=[5, 2], grid=grid
    )
)
sim.add_diagnostic(field_diag)

##########################
# simulation run
##########################
Beispiel #12
0
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=1,
    data_list=['Ex'],
    write_dir='.',
    warpx_file_prefix="embedded_boundary_python_API_plt")

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       warpx_embedded_boundary=embedded_boundary,
                       verbose=1)

sim.add_diagnostic(field_diag)

sim.initialize_inputs()

sim.step(1)

print("======== Testing sim.extension.get_mesh_edge_lengths =========")

ly_slice_x = np.array(
    sim.extension.get_mesh_edge_lengths(
        0, 1, include_ghosts=False)[0])[int(nx / 2), :, :]
lz_slice_x = np.array(
    sim.extension.get_mesh_edge_lengths(
Beispiel #13
0
    def setup_run(self):
        """Setup simulation components."""

        #######################################################################
        # Set geometry and boundary conditions                                #
        #######################################################################

        self.grid = picmi.Cartesian1DGrid(
            number_of_cells=[self.nz],
            warpx_max_grid_size=128,
            lower_bound=[0],
            upper_bound=[self.gap],
            lower_boundary_conditions=['dirichlet'],
            upper_boundary_conditions=['dirichlet'],
            lower_boundary_conditions_particles=['absorbing'],
            upper_boundary_conditions_particles=['absorbing'],
            warpx_potential_hi_z=self.voltage,
        )

        #######################################################################
        # Field solver                                                        #
        #######################################################################

        self.solver = picmi.ElectrostaticSolver(grid=self.grid,
                                                method='Multigrid',
                                                required_precision=1e-12,
                                                warpx_self_fields_verbosity=0)

        #######################################################################
        # Particle types setup                                                #
        #######################################################################

        self.electrons = picmi.Species(
            particle_type='electron',
            name='electrons',
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.elec_temp / constants.m_e)
                ] * 3,
            ))
        self.ions = picmi.Species(
            particle_type='He',
            name='he_ions',
            charge='q_e',
            mass=self.m_ion,
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.gas_temp / self.m_ion)
                ] * 3,
            ))

        #######################################################################
        # Collision  initialization                                           #
        #######################################################################

        cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
        mcc_electrons = picmi.MCCCollisions(
            name='coll_elec',
            species=self.electrons,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            background_mass=self.ions.mass,
            scattering_processes={
                'elastic': {
                    'cross_section':
                    cross_sec_direc + 'electron_scattering.dat'
                },
                'excitation1': {
                    'cross_section': cross_sec_direc + 'excitation_1.dat',
                    'energy': 19.82
                },
                'excitation2': {
                    'cross_section': cross_sec_direc + 'excitation_2.dat',
                    'energy': 20.61
                },
                'ionization': {
                    'cross_section': cross_sec_direc + 'ionization.dat',
                    'energy': 24.55,
                    'species': self.ions
                },
            })

        mcc_ions = picmi.MCCCollisions(
            name='coll_ion',
            species=self.ions,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            scattering_processes={
                'elastic': {
                    'cross_section': cross_sec_direc + 'ion_scattering.dat'
                },
                'back': {
                    'cross_section': cross_sec_direc + 'ion_back_scatter.dat'
                },
                # 'charge_exchange' : {
                #    'cross_section' : cross_sec_direc+'charge_exchange.dat'
                # }
            })

        #######################################################################
        # Initialize simulation                                               #
        #######################################################################

        self.sim = picmi.Simulation(
            solver=self.solver,
            time_step_size=self.dt,
            max_steps=self.max_steps,
            warpx_collisions=[mcc_electrons, mcc_ions],
            warpx_load_balance_intervals=self.max_steps // 5000,
            verbose=self.test)

        self.sim.add_species(self.electrons,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))
        self.sim.add_species(self.ions,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))

        #######################################################################
        # Add diagnostics for the CI test to be happy                         #
        #######################################################################

        field_diag = picmi.FieldDiagnostic(
            name='diag1',
            grid=self.grid,
            period=0,
            data_list=['rho_electrons', 'rho_he_ions'],
            write_dir='.',
            warpx_file_prefix='Python_background_mcc_1d_plt')
        self.sim.add_diagnostic(field_diag)
Beispiel #14
0
 def __init__(self):
     self.initialized = False
     self.simulation = picmi.Simulation(verbose=0)
     # make a shorthand for simulation.extension since we use it a lot
     self.sim_ext = self.simulation.extension
Beispiel #15
0
plasma_distribution = picmi.UniformDistribution(
    density=1.e22,
    lower_bound=[-200.e-6, -200.e-6, 0.],
    upper_bound=[+200.e-6, +200.e-6, None],
    fill_in=True)

beam = picmi.Species(particle_type='electron',
                     name='beam',
                     initial_distribution=beam_distribution)
plasma = picmi.Species(particle_type='electron',
                       name='plasma',
                       initial_distribution=plasma_distribution)

sim = picmi.Simulation(solver=solver,
                       max_steps=2,
                       verbose=1,
                       warpx_current_deposition_algo='esirkepov')

sim.add_species(beam,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=2,
Beispiel #16
0
grid = picmi.CylindricalGrid(
    number_of_cells=[nr, nz],
    n_azimuthal_modes=3,
    lower_bound=[rmin, zmin],
    upper_bound=[rmax, zmax],
    lower_boundary_conditions=['dirichlet', 'periodic'],
    upper_boundary_conditions=['dirichlet', 'periodic'],
    moving_window_zvelocity=0.,
    warpx_max_grid_size=64)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
                       verbose=1,
                       warpx_plot_int=40,
                       warpx_current_deposition_algo='esirkepov',
                       warpx_field_gathering_algo='energy-conserving',
                       warpx_particle_pusher_algo='boris')

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2, 16, 2],
                                           grid=grid))
sim.add_species(protons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2, 16, 2],
                                           grid=grid))

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name='inputsrz_from_PICMI')
Beispiel #17
0
grid = picmi.CylindricalGrid(
    number_of_cells=[nr, nz],
    lower_bound=[rmin, zmin],
    upper_bound=[rmax, zmax],
    lower_boundary_conditions=['dirichlet', 'periodic'],
    upper_boundary_conditions=['dirichlet', 'periodic'],
    moving_window_velocity=[0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
                       verbose=1,
                       warpx_plot_int=1,
                       warpx_current_deposition_algo=3,
                       warpx_charge_deposition_algo=0,
                       warpx_field_gathering_algo=0,
                       warpx_particle_pusher_algo=0)

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2, 2],
                                           grid=grid))

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
sim.write_input_file(file_name='inputsrz_from_PICMI')

# Alternatively, sim.step will run WarpX, controlling it from Python
#sim.step()
Beispiel #18
0
    grid=grid,
    period=10,
    data_list=args.fields_to_plot,
    warpx_format=args.diagformat,
    write_dir='.',
    warpx_file_prefix='Python_gaussian_beam_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons, protons],
                                      data_list=['weighting', 'momentum'],
                                      warpx_format=args.diagformat)

sim = picmi.Simulation(solver=solver,
                       max_steps=10,
                       verbose=1,
                       warpx_current_deposition_algo='direct',
                       warpx_use_filter=0)

sim.add_species(
    electrons,
    layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles))
sim.add_species(
    protons,
    layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles))

sim.add_diagnostic(field_diag1)
sim.add_diagnostic(part_diag1)

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
Beispiel #19
0
                          name='electrons',
                          initial_distribution=uniform_plasma)

grid = picmi.Cartesian2DGrid(
    number_of_cells=[nx, ny],
    lower_bound=[xmin, ymin],
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
                       verbose=1,
                       warpx_plot_int=1,
                       warpx_current_deposition_algo='direct')

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2, 2],
                                           grid=grid))

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
sim.write_input_file(file_name='inputs2d_from_PICMI')

# Alternatively, sim.step will run WarpX, controlling it from Python
#sim.step()
Beispiel #20
0
                                     warpx_psatd_update_with_rho=True)

# Initialize diagnostics
diag_field_list = ["E", "B"]
field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=10,
                                   write_dir='.',
                                   warpx_file_prefix='Python_wrappers_plt',
                                   data_list=diag_field_list)

# Initialize simulation
sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       particle_shape='cubic',
                       warpx_current_deposition_algo='direct',
                       warpx_particle_pusher_algo='boris',
                       warpx_field_gathering_algo='energy-conserving',
                       warpx_use_filter=1)

# Add diagnostics to simulation
sim.add_diagnostic(field_diag)

# Write input file to run with compiled version
sim.write_input_file(file_name='inputs_2d')

# Whether to include guard cells in data returned by Python wrappers
include_ghosts = 1


# Compute min and max of fields data