Beispiel #1
0
def dp_vector_match_result():
    res = np.empty(4, dtype="object")
    res[0] = OrientationResult(0, euler2mat(*np.deg2rad([90, 0, 0]), 'rzxz'), 0.6, np.array([0.1, 0.10, 0.2]), 0.3, 1.0, 0, 0)
    res[1] = OrientationResult(0, euler2mat(*np.deg2rad([0, 10, 20]), 'rzxz'), 0.5, np.array([0.1, 0.05, 0.2]), 0.4, 1.0, 0, 0)
    res[2] = OrientationResult(1, euler2mat(*np.deg2rad([0, 45, 45]), 'rzxz'), 0.8, np.array([0.1, 0.30, 0.2]), 0.1, 1.0, 0, 0)
    res[3] = OrientationResult(1, euler2mat(*np.deg2rad([0, 0, 90]), 'rzxz'), 0.7, np.array([0.1, 0.05, 0.1]), 0.2, 1.0, 0, 0)
    return res
Beispiel #2
0
def sp_vector_match_result():
    # We require (total_error of row_1 > correlation row_2)
    res = np.empty(2, dtype="object")
    res[0] = OrientationResult(0, euler2mat(*np.deg2rad([0, 0, 90]), 'rzxz'),
                               0.5, np.array([0.1, 0.05, 0.2]), 0.1, 1.0, 0, 0)
    res[1] = OrientationResult(0, euler2mat(*np.deg2rad([0, 0, 90]), 'rzxz'),
                               0.6, np.array([0.1, 0.10, 0.2]), 0.2, 1.0, 0, 0)
    return res
def dp_vector_match_result():
    res = np.empty(4, dtype="object")
    res = res.reshape(2,2)
    res[0,0] = OrientationResult(
        0,
        euler2mat(*np.deg2rad([90, 0, 0]), "rzxz"),
        0.6,
        np.array([0.1, 0.10, 0.2]),
        0.3,
        1.0,
        0,
        0,
    )
    res[0,1] = OrientationResult(
        0,
        euler2mat(*np.deg2rad([0, 10, 20]), "rzxz"),
        0.5,
        np.array([0.1, 0.05, 0.2]),
        0.4,
        1.0,
        0,
        0,
    )
    res[1,0] = OrientationResult(
        1,
        euler2mat(*np.deg2rad([0, 45, 45]), "rzxz"),
        0.8,
        np.array([0.1, 0.30, 0.2]),
        0.1,
        1.0,
        0,
        0,
    )
    res[1,1] = OrientationResult(
        1,
        euler2mat(*np.deg2rad([0, 0, 90]), "rzxz"),
        0.7,
        np.array([0.1, 0.05, 0.1]),
        0.2,
        1.0,
        0,
        0,
    )
    return VectorMatchingResults(res)
Beispiel #4
0
def _refine_orientation(
    solution,
    k_xy,
    structure_library,
    accelarating_voltage,
    camera_length,
    index_error_tol=0.2,
    method="leastsq",
    vary_angles=True,
    vary_center=False,
    vary_scale=False,
    verbose=False,
):
    """
    Refine a single orientation agains the given cartesian vector coordinates.

    Parameters
    ----------
    solution : OrientationResult
        Namedtuple containing the starting orientation
    k_xy : DiffractionVectors
        DiffractionVectors (x,y pixel format) to be indexed.
    structure_library : :obj:`diffsims:StructureLibrary` Object
        Dictionary of structures and associated orientations for which
        electron diffraction is to be simulated.
    index_error_tol : float
        Max allowed error in peak indexation for classifying it as indexed,
        calculated as :math:`|hkl_calculated - round(hkl_calculated)|`.
    method : str
        Minimization algorithm to use, choose from:
        'leastsq', 'nelder', 'powell', 'cobyla', 'least-squares'.
        See `lmfit` documentation (https://lmfit.github.io/lmfit-py/fitting.html)
        for more information.
    vary_angles : bool,
        Free the euler angles (rotation matrix) during the refinement.
    vary_center : bool
        Free the center of the diffraction pattern (beam center) during the refinement.
    vary_scale : bool
        Free the scale (i.e. pixel size) of the diffraction vectors during refinement.
    verbose : bool
        Be more verbose

    Returns
    -------
    result : OrientationResult
        Container for the orientation refinement results
    """

    # prepare reciprocal_lattice
    structure = structure_library.structures[solution.phase_index]
    lattice_recip = structure.lattice.reciprocal()

    def objfunc(params, k_xy, lattice_recip, wavelength, camera_length):
        cx = params["center_x"].value
        cy = params["center_y"].value
        ai = params["ai"].value
        aj = params["aj"].value
        ak = params["ak"].value
        scale = params["scale"].value

        rotmat = euler2mat(ai, aj, ak)

        k_xy = k_xy + np.array((cx, cy)) * scale
        cart = detector_to_fourier(k_xy, wavelength, camera_length)

        intermediate = cart.dot(rotmat.T)  # Must use the transpose here
        hklss = lattice_recip.fractional(intermediate) * scale

        rhklss = np.rint(hklss)
        ehklss = np.abs(hklss - rhklss)

        return ehklss

    ai, aj, ak = mat2euler(solution.rotation_matrix)

    params = lmfit.Parameters()
    params.add("center_x", value=solution.center_x, vary=vary_center)
    params.add("center_y", value=solution.center_y, vary=vary_center)
    params.add("ai", value=ai, vary=vary_angles)
    params.add("aj", value=aj, vary=vary_angles)
    params.add("ak", value=ak, vary=vary_angles)
    params.add("scale",
               value=solution.scale,
               vary=vary_scale,
               min=0.8,
               max=1.2)

    wavelength = get_electron_wavelength(accelarating_voltage)
    camera_length = camera_length * 1e10
    args = k_xy, lattice_recip, wavelength, camera_length

    res = lmfit.minimize(objfunc, params, args=args, method=method)

    if verbose:  # pragma: no cover
        lmfit.report_fit(res)

    p = res.params

    ai, aj, ak = p["ai"].value, p["aj"].value, p["ak"].value
    scale = p["scale"].value
    center_x = params["center_x"].value
    center_y = params["center_y"].value

    rotation_matrix = euler2mat(ai, aj, ak)

    k_xy = k_xy + np.array((center_x, center_y)) * scale
    cart = detector_to_fourier(k_xy,
                               wavelength=wavelength,
                               camera_length=camera_length)

    intermediate = cart.dot(rotation_matrix.T)  # Must use the transpose here
    hklss = lattice_recip.fractional(intermediate)

    rhklss = np.rint(hklss)

    error_hkls = res.residual.reshape(-1, 3)
    error_mean = np.mean(error_hkls)

    valid_peak_mask = np.max(error_hkls, axis=-1) < index_error_tol
    valid_peak_count = np.count_nonzero(valid_peak_mask, axis=-1)

    num_peaks = len(k_xy)

    match_rate = (valid_peak_count * (1 / num_peaks)) if num_peaks else 0

    orientation = OrientationResult(
        phase_index=solution.phase_index,
        rotation_matrix=rotation_matrix,
        match_rate=match_rate,
        error_hkls=error_hkls,
        total_error=error_mean,
        scale=scale,
        center_x=center_x,
        center_y=center_y,
    )

    res = np.empty(2, dtype=np.object)
    res[0] = orientation
    res[1] = rhklss

    return res