def test_remove_isolated_vertex_preserves_semantics(self):
     g = Graph()
     v = g.add_vertex(1, 0, 0)
     g2 = g.copy()
     g2.remove_isolated_vertices()
     self.assertTrue(compare_tensors(g, g2))
     self.assertEqual(g2.scalar.to_number(), 2)
     g.set_phase(v, Fraction(1))
     g2 = g.copy()
     g2.remove_isolated_vertices()
     self.assertTrue(compare_tensors(g, g2))
     self.assertAlmostEqual(g2.scalar.to_number(), 0)
 def test_copy(self):
     g = Graph()
     v1, v2 = g.add_vertices(2)
     g.add_edge((v1, v2), 2)
     g2 = g.copy()
     self.assertEqual(g.num_vertices(), g2.num_vertices())
     self.assertEqual(g.num_edges(), g2.num_edges())
     v1, v2 = list(g2.vertices())
     self.assertEqual(g.edge_type(g.edge(v1, v2)), 2)
 def test_remove_isolated_pair_preserves_semantics(self):
     for i, j, k in itertools.product([1, 2], repeat=3):
         for phase1, phase2 in itertools.product([0, 1, 2], [0, 4, 5]):
             with self.subTest(i=i, j=j, k=k, phase1=phase1, phase2=phase2):
                 g = Graph()
                 v = g.add_vertex(i, 0, 0, phase=phase1)
                 w = g.add_vertex(j, 1, 0, phase=phase2)
                 g.add_edge((v, w), k)
                 g2 = g.copy()
                 g2.remove_isolated_vertices()
                 self.assertEqual(g2.num_vertices(), 0)
                 self.assertTrue(compare_tensors(g, g2))
Beispiel #4
0
class TestGraphCircuitMethods(unittest.TestCase):

    def setUp(self):
        """Sets up a two qubit circuit containing a single CNOT with some phases."""
        self.graph = Graph()
        g = self.graph
        i1 = g.add_vertex(0,0,0) #add_vertex(type,qubit_index,row_index,phase=0)
        i2 = g.add_vertex(0,1,0)
        g.inputs = [i1,i2]
        v = g.add_vertex(1,0,1,Fraction(1,2))
        w = g.add_vertex(2,1,1,Fraction(1,1))
        o1 = g.add_vertex(0,0,2)
        o2 = g.add_vertex(0,1,2)
        g.outputs = [o1, o2]
        g.add_edges([(i1,v),(i2,w),(v,w),(v,o1),(w,o2)])
        self.i1, self.i2, self.v, self.w, self.o1, self.o2 = i1, i2, v, w, o1, o2

    def test_qubit_index_and_depth(self):
        g = self.graph
        self.assertEqual(g.depth(),2)
        self.assertEqual(g.qubit_count(),2)

    def test_adjoint(self):
        g = self.graph
        adj = g.adjoint()
        self.assertEqual(g.num_vertices(),adj.num_vertices())
        self.assertEqual(g.num_edges(),adj.num_edges())
        self.assertEqual(g.depth(), adj.depth())
        self.assertEqual(g.qubit_count(), adj.qubit_count())

        v = [i for i in g.vertices() if g.type(i)==1][0]
        w = [i for i in adj.vertices() if adj.type(i)==1][0]
        self.assertEqual(g.phase(v),(-adj.phase(v))%2)
        self.assertEqual(g.vertex_degree(v),adj.vertex_degree(w))

    def test_compose_basic(self):
        g = self.graph.copy()
        g.compose(g)
        self.assertEqual(g.num_vertices(), self.graph.num_vertices()+2)
        self.assertEqual((len(g.inputs),len(g.outputs)),(2,2))

    def test_compose_handling_hadamards(self):
        g = self.graph
        g.set_edge_type(g.edge(self.v,self.o1),2)
        g2 = g.copy()
        g2.compose(g)
        num_hadamards = len([e for e in g2.edges() if g2.edge_type(e)==2])
        self.assertEqual(num_hadamards, 2)
        g2 = g.copy()
        g2.compose(g.adjoint())
        num_hadamards = len([e for e in g2.edges() if g2.edge_type(e)==2])
        self.assertEqual(num_hadamards, 0)
Beispiel #5
0
 def test_equality_of_id_zx_graph_to_id(self):
     g = Graph()
     i = g.add_vertex(0, 0, 0)
     o = g.add_vertex(0, 0, 2)
     g.inputs.append(i)
     g.outputs.append(o)
     g2 = g.copy()
     g.add_edge((i, o))
     v = g2.add_vertex(1, 0, 1)
     g2.add_edges([(i, v), (v, o)])
     tensor1 = tensorfy(g)
     tensor2 = tensorfy(g2)
     self.assertTrue(compare_tensors(tensor1, tensor2))
Beispiel #6
0
 def test_inequality_id_and_swap(self):
     g = Graph()
     i1 = g.add_vertex(0, 0, 0)
     i2 = g.add_vertex(0, 1, 0)
     o1 = g.add_vertex(0, 0, 1)
     o2 = g.add_vertex(0, 1, 1)
     g.inputs = [i1, i2]
     g.outputs = [o1, o2]
     g2 = g.copy()
     g.add_edges([(i1, o2), (i2, o1)])
     g2.add_edges([(i1, o1), (i2, o2)])
     id_id = tensorfy(g2)
     swap = tensorfy(g)
     self.assertFalse(compare_tensors(id_id, swap))
Beispiel #7
0
class TestGraphCircuitMethods(unittest.TestCase):
    def setUp(self):
        """Sets up a two qubit circuit containing a single CNOT with some phases."""
        self.graph = Graph()
        g = self.graph
        i1 = g.add_vertex(VertexType.BOUNDARY, 0,
                          0)  #add_vertex(type,qubit_index,row_index,phase=0)
        i2 = g.add_vertex(VertexType.BOUNDARY, 1, 0)
        g.inputs = [i1, i2]
        v = g.add_vertex(VertexType.Z, 0, 1, Fraction(1, 2))
        w = g.add_vertex(VertexType.X, 1, 1, Fraction(1, 1))
        o1 = g.add_vertex(VertexType.BOUNDARY, 0, 2)
        o2 = g.add_vertex(VertexType.BOUNDARY, 1, 2)
        g.outputs = [o1, o2]
        g.add_edges([(i1, v), (i2, w), (v, w), (v, o1), (w, o2)])
        self.i1, self.i2, self.v, self.w, self.o1, self.o2 = i1, i2, v, w, o1, o2

    def test_qubit_index_and_depth(self):
        g = self.graph
        self.assertEqual(g.depth(), 2)
        self.assertEqual(g.qubit_count(), 2)

    def test_adjoint(self):
        g = self.graph
        adj = g.adjoint()
        self.assertEqual(g.num_vertices(), adj.num_vertices())
        self.assertEqual(g.num_edges(), adj.num_edges())
        self.assertEqual(g.depth(), adj.depth())
        self.assertEqual(g.qubit_count(), adj.qubit_count())

        v = [i for i in g.vertices() if g.type(i) == VertexType.Z][0]
        w = [i for i in adj.vertices() if adj.type(i) == VertexType.Z][0]
        self.assertEqual(g.phase(v), (-adj.phase(v)) % 2)
        self.assertEqual(g.vertex_degree(v), adj.vertex_degree(w))

    def test_compose_basic(self):
        g = self.graph.copy()
        g.compose(g)
        self.assertEqual((len(g.inputs), len(g.outputs)), (2, 2))

    @unittest.skipUnless(np, "numpy needs to be installed for this to run")
    def test_compose_unitary(self):
        g = self.graph
        g.set_edge_type(g.edge(self.v, self.o1), EdgeType.HADAMARD)
        g2 = g.adjoint()
        g2.compose(g)
        self.assertTrue(compare_tensors(g2, identity(2), False))