Beispiel #1
0
def answer():
    top15 = q1.answer()
    top15['pop'] = top15['Energy Supply'] / top15['Energy Supply per Capita']
    top15['bucket'] = pd.cut(top15['% Renewable'], 5)
    continents = q11.continentDict()
    count = top15[['pop', 'bucket']] \
                .groupby([lambda country: continents[country], 'bucket']) \
                .count() \
                .dropna()
    count.index.rename(['Continent', 'bins'], inplace=True)
    count.columns = ['count']
    return pd.Series(count['count'], index=count.index)
Beispiel #2
0
def answer():
    top15 = q1.answer()
    top15['pop'] = top15['Energy Supply'] / top15['Energy Supply per Capita']
    print(top15.loc['China', 'pop'])
    PopEst = top15['pop'].map('{:,}'.format)
    return PopEst
def answer():
    top15 = q1.answer()
    largest = top15['% Renewable'].nlargest(1)
    return (largest.index[0], largest.values[0])
Beispiel #4
0
def answer():
    top15 = q1.answer()
    top15['pop'] = top15['Energy Supply'] / top15['Energy Supply per Capita']
    top15['docs per capita'] = top15['Citable documents'] / top15['pop']
    sigma = top15[['Energy Supply per Capita', 'docs per capita']].corr()
    return sigma.iloc[0, 1]
def answer():
    top15 = q1.answer()
    med = top15['% Renewable'].median()
    top15.loc[top15['% Renewable'] >= med, 'HighRenew'] = 1
    top15.loc[top15['% Renewable'] < med, 'HighRenew'] = 0
    return top15.sort_values('Rank')['HighRenew']
def answer():
    avgGDP = q1.answer()
    columns = getGdpColumns()
    avgGDP = avgGDP[columns].mean(1).sort_values(ascending=False)
    return avgGDP
def answer():
    top15 = q1.answer()
    top15['pop'] = top15['Energy Supply'] / top15['Energy Supply per Capita']
    largest = top15['pop'].nlargest(3)
    return largest.index[2]
Beispiel #8
0
def answer():
    top15 = q1.answer()
    country = q3.answer().index[5]
    gdp2006 = top15.loc[country, '2006']
    gdp2015 = top15.loc[country, '2015']
    return gdp2015 - gdp2006
def answer():
    top15 = q1.answer()
    return top15['Energy Supply per Capita'].mean()