Beispiel #1
0
def test_sum_instantiator():
    """Test use of Sum instantiator."""
    i = IdxSym('i')
    j = IdxSym('j')
    ket_i = BasisKet(FockIndex(i), hs=0)
    ket_j = BasisKet(FockIndex(j), hs=0)
    A_i = OperatorSymbol(StrLabel(IndexedBase('A')[i]), hs=0)
    hs0 = LocalSpace('0')

    sum = Sum(i)(ket_i)
    ful = KetIndexedSum(ket_i, ranges=IndexOverFockSpace(i, hs=hs0))
    assert sum == ful
    assert sum == Sum(i, hs0)(ket_i)
    assert sum == Sum(i, hs=hs0)(ket_i)

    sum = Sum(i, 1, 10)(ket_i)
    ful = KetIndexedSum(ket_i, ranges=IndexOverRange(i, 1, 10))
    assert sum == ful
    assert sum == Sum(i, 1, 10, 1)(ket_i)
    assert sum == Sum(i, 1, to=10, step=1)(ket_i)
    assert sum == Sum(i, 1, 10, step=1)(ket_i)

    sum = Sum(i, (1, 2, 3))(ket_i)
    ful = KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3)))
    assert sum == KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3)))
    assert sum == Sum(i, [1, 2, 3])(ket_i)

    sum = Sum(i)(Sum(j)(ket_i * ket_j.dag()))
    ful = OperatorIndexedSum(
        ket_i * ket_j.dag(),
        ranges=(IndexOverFockSpace(i, hs0), IndexOverFockSpace(j, hs0)),
    )
    assert sum == ful
Beispiel #2
0
def test_unicode_ket_operations():
    """Test the unicode representation of ket operations"""
    hs1 = LocalSpace('q_1', basis=('g', 'e'))
    hs2 = LocalSpace('q_2', basis=('g', 'e'))
    ket_g1 = BasisKet('g', hs=hs1)
    ket_e1 = BasisKet('e', hs=hs1)
    ket_g2 = BasisKet('g', hs=hs2)
    ket_e2 = BasisKet('e', hs=hs2)
    psi1 = KetSymbol("Psi_1", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    phi = KetSymbol("Phi", hs=hs2)
    A = OperatorSymbol("A_0", hs=hs1)
    gamma = symbols('gamma', positive=True)
    alpha = symbols('alpha')
    beta = symbols('beta')
    phase = exp(-I * gamma)
    i = IdxSym('i')
    assert unicode(psi1 + psi2) == '|Ψ₁⟩^(q₁) + |Ψ₂⟩^(q₁)'
    assert unicode(psi1 * phi) == '|Ψ₁⟩^(q₁) ⊗ |Φ⟩^(q₂)'
    assert unicode(phase * psi1) == 'exp(-ⅈ γ) |Ψ₁⟩^(q₁)'
    assert unicode((alpha + 1) * KetSymbol('Psi', hs=0)) == '(α + 1) |Ψ⟩⁽⁰⁾'
    assert (unicode(
        A * psi1) == 'A\u0302_0^(q\u2081) |\u03a8\u2081\u27e9^(q\u2081)')
    #        Â_0^(q₁) |Ψ₁⟩^(q₁)
    assert unicode(BraKet(psi1, psi2)) == '⟨Ψ₁|Ψ₂⟩^(q₁)'
    expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert unicode(expr) == '⟨Ψ₁(α)|Ψ₂(β)⟩^(q₁)'
    assert unicode(ket_e1.dag() * ket_e1) == '1'
    assert unicode(ket_g1.dag() * ket_e1) == '0'
    assert unicode(KetBra(psi1, psi2)) == '|Ψ₁⟩⟨Ψ₂|^(q₁)'
    expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert unicode(expr) == '|Ψ₁(α)⟩⟨Ψ₂(β)|^(q₁)'
    bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2)
    bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2)
    assert unicode(bell1) == '1/√2 (|eg⟩^(q₁⊗q₂) - ⅈ |ge⟩^(q₁⊗q₂))'
    assert (unicode(BraKet.create(
        bell1,
        bell2)) == r'1/2 (⟨eg|^(q₁⊗q₂) + ⅈ ⟨ge|^(q₁⊗q₂)) (|ee⟩^(q₁⊗q₂) - '
            r'|gg⟩^(q₁⊗q₂))')
    assert (unicode(KetBra.create(
        bell1,
        bell2)) == r'1/2 (|eg⟩^(q₁⊗q₂) - ⅈ |ge⟩^(q₁⊗q₂))(⟨ee|^(q₁⊗q₂) - '
            r'⟨gg|^(q₁⊗q₂))')
    assert (unicode(
        KetBra.create(bell1, bell2),
        show_hs_label=False) == r'1/2 (|eg⟩ - ⅈ |ge⟩)(⟨ee| - ⟨gg|)')
    expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
    assert unicode(expr) == "|Ψ⟩⟨i|⁽⁰⁾"
    expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
    assert unicode(expr) == "|i⟩⟨Ψ|⁽⁰⁾"
    expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
    assert unicode(expr) == "⟨Ψ|i⟩⁽⁰⁾"
    expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
    assert unicode(expr) == "⟨i|Ψ⟩⁽⁰⁾"
def state_exprs():
    """Prepare a list of state algebra expressions"""
    hs1 = LocalSpace('q1', basis=('g', 'e'))
    hs2 = LocalSpace('q2', basis=('g', 'e'))
    ket_g1 = BasisKet('g', hs=hs1)
    ket_e1 = BasisKet('e', hs=hs1)
    ket_g2 = BasisKet('g', hs=hs2)
    ket_e2 = BasisKet('e', hs=hs2)
    psi1 = KetSymbol("Psi_1", hs=hs1)
    psi1_l = KetSymbol("Psi_1", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi3 = KetSymbol("Psi_3", hs=hs1)
    phi = KetSymbol("Phi", hs=hs2)
    phi_l = KetSymbol("Phi", hs=hs2)
    A = OperatorSymbol("A_0", hs=hs1)
    gamma = symbols('gamma')
    phase = exp(-I * gamma)
    bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2)
    bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2)
    bra_psi1 = KetSymbol("Psi_1", hs=hs1).dag()
    bra_psi1_l = KetSymbol("Psi_1", hs=hs1).dag()
    bra_psi2 = KetSymbol("Psi_2", hs=hs1).dag()
    bra_psi2 = KetSymbol("Psi_2", hs=hs1).dag()
    bra_phi_l = KetSymbol("Phi", hs=hs2).dag()
    return [
        KetSymbol('Psi', hs=hs1),
        KetSymbol('Psi', hs=1),
        KetSymbol('Psi', hs=(1, 2)),
        KetSymbol('Psi', symbols('alpha'), symbols('beta'), hs=(1, 2)),
        KetSymbol('Psi', hs=1),
        ZeroKet,
        TrivialKet,
        BasisKet('e', hs=hs1),
        BasisKet('excited', hs=LocalSpace(1, basis=('ground', 'excited'))),
        BasisKet(1, hs=1),
        CoherentStateKet(2.0, hs=1),
        CoherentStateKet(2.0, hs=1).to_fock_representation(),
        Bra(KetSymbol('Psi', hs=hs1)),
        Bra(KetSymbol('Psi', hs=1)),
        Bra(KetSymbol('Psi', hs=(1, 2))),
        Bra(KetSymbol('Psi', hs=hs1 * hs2)),
        KetSymbol('Psi', hs=1).dag(),
        Bra(ZeroKet),
        Bra(TrivialKet),
        BasisKet('e', hs=hs1).adjoint(),
        BasisKet(1, hs=1).adjoint(),
        CoherentStateKet(2.0, hs=1).dag(),
        psi1 + psi2,
        psi1 - psi2 + psi3,
        psi1 * phi,
        psi1_l * phi_l,
        phase * psi1,
        A * psi1,
        BraKet(psi1, psi2),
        ket_e1.dag() * ket_e1,
        ket_g1.dag() * ket_e1,
        KetBra(psi1, psi2),
        bell1,
        BraKet.create(bell1, bell2),
        KetBra.create(bell1, bell2),
        (psi1 + psi2).dag(),
        bra_psi1 + bra_psi2,
        bra_psi1_l * bra_phi_l,
        Bra(phase * psi1),
        (A * psi1).dag(),
    ]
Beispiel #4
0
def test_ascii_ket_operations():
    """Test the ascii representation of ket operations"""
    hs1 = LocalSpace('q_1', basis=('g', 'e'))
    hs2 = LocalSpace('q_2', basis=('g', 'e'))
    ket_g1 = BasisKet('g', hs=hs1)
    ket_e1 = BasisKet('e', hs=hs1)
    ket_g2 = BasisKet('g', hs=hs2)
    ket_e2 = BasisKet('e', hs=hs2)
    psi1 = KetSymbol("Psi_1", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi3 = KetSymbol("Psi_3", hs=hs1)
    phi = KetSymbol("Phi", hs=hs2)
    A = OperatorSymbol("A_0", hs=hs1)
    gamma = symbols('gamma', positive=True)
    alpha = symbols('alpha')
    beta = symbols('beta')
    phase = exp(-I * gamma)
    i = IdxSym('i')
    assert ascii(psi1 + psi2) == '|Psi_1>^(q_1) + |Psi_2>^(q_1)'
    assert (ascii(psi1 - psi2 +
                  psi3) == '|Psi_1>^(q_1) - |Psi_2>^(q_1) + |Psi_3>^(q_1)')
    with pytest.raises(UnequalSpaces):
        psi1 + phi
    with pytest.raises(AttributeError):
        (psi1 * phi).label
    assert ascii(psi1 * phi) == '|Psi_1>^(q_1) * |Phi>^(q_2)'
    with pytest.raises(OverlappingSpaces):
        psi1 * psi2
    assert ascii(phase * psi1) == 'exp(-I*gamma) * |Psi_1>^(q_1)'
    assert (ascii(
        (alpha + 1) * KetSymbol('Psi', hs=0)) == '(alpha + 1) * |Psi>^(0)')
    assert ascii(A * psi1) == 'A_0^(q_1) |Psi_1>^(q_1)'
    with pytest.raises(SpaceTooLargeError):
        A * phi
    assert ascii(BraKet(psi1, psi2)) == '<Psi_1|Psi_2>^(q_1)'
    expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert ascii(expr) == '<Psi_1(alpha)|Psi_2(beta)>^(q_1)'
    assert ascii(psi1.dag() * psi2) == '<Psi_1|Psi_2>^(q_1)'
    assert ascii(ket_e1.dag() * ket_e1) == '1'
    assert ascii(ket_g1.dag() * ket_e1) == '0'
    assert ascii(KetBra(psi1, psi2)) == '|Psi_1><Psi_2|^(q_1)'
    expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert ascii(expr) == '|Psi_1(alpha)><Psi_2(beta)|^(q_1)'
    bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2)
    bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2)
    assert ascii(bell1) == '1/sqrt(2) * (|eg>^(q_1*q_2) - I * |ge>^(q_1*q_2))'
    assert ascii(bell2) == '1/sqrt(2) * (|ee>^(q_1*q_2) - |gg>^(q_1*q_2))'
    expr = BraKet.create(bell1, bell2)
    expected = (
        r'1/2 * (<eg|^(q_1*q_2) + I * <ge|^(q_1*q_2)) * (|ee>^(q_1*q_2) '
        r'- |gg>^(q_1*q_2))')
    assert ascii(expr) == expected
    assert (ascii(KetBra.create(bell1, bell2)) ==
            '1/2 * (|eg>^(q_1*q_2) - I * |ge>^(q_1*q_2))(<ee|^(q_1*q_2) '
            '- <gg|^(q_1*q_2))')
    expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
    assert ascii(expr) == "|Psi><i|^(0)"
    expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
    assert ascii(expr) == "|i><Psi|^(0)"
    expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
    assert ascii(expr) == "<Psi|i>^(0)"
    expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
    assert ascii(expr) == "<i|Psi>^(0)"
Beispiel #5
0
def test_tex_ket_operations():
    """Test the tex representation of ket operations"""
    hs1 = LocalSpace('q_1', basis=('g', 'e'))
    hs2 = LocalSpace('q_2', basis=('g', 'e'))
    ket_g1 = BasisKet('g', hs=hs1)
    ket_e1 = BasisKet('e', hs=hs1)
    ket_g2 = BasisKet('g', hs=hs2)
    ket_e2 = BasisKet('e', hs=hs2)
    psi1 = KetSymbol("Psi_1", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi2 = KetSymbol("Psi_2", hs=hs1)
    psi3 = KetSymbol("Psi_3", hs=hs1)
    phi = KetSymbol("Phi", hs=hs2)
    A = OperatorSymbol("A_0", hs=hs1)
    gamma = symbols('gamma', positive=True)
    alpha = symbols('alpha')
    beta = symbols('beta')
    phase = exp(-I * gamma)
    i = IdxSym('i')
    assert (latex(psi1 +
                  psi2) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} + '
            r'\left\lvert \Psi_{2} \right\rangle^{(q_{1})}')
    assert (latex(psi1 - psi2 +
                  psi3) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} - '
            r'\left\lvert \Psi_{2} \right\rangle^{(q_{1})} + '
            r'\left\lvert \Psi_{3} \right\rangle^{(q_{1})}')
    assert (latex(
        psi1 * phi) == r'\left\lvert \Psi_{1} \right\rangle^{(q_{1})} \otimes '
            r'\left\lvert \Phi \right\rangle^{(q_{2})}')
    assert (latex(phase * psi1) ==
            r'e^{- i \gamma} \left\lvert \Psi_{1} \right\rangle^{(q_{1})}')
    assert (latex((alpha + 1) * KetSymbol('Psi', hs=0)) ==
            r'\left(\alpha + 1\right) \left\lvert \Psi \right\rangle^{(0)}')
    assert (latex(
        A * psi1
    ) == r'\hat{A}_{0}^{(q_{1})} \left\lvert \Psi_{1} \right\rangle^{(q_{1})}')
    braket = BraKet(psi1, psi2)
    assert (
        latex(braket, show_hs_label='subscript') ==
        r'\left\langle \Psi_{1} \middle\vert \Psi_{2} \right\rangle_{(q_{1})}')
    assert (latex(braket, show_hs_label=False) ==
            r'\left\langle \Psi_{1} \middle\vert \Psi_{2} \right\rangle')
    expr = BraKet(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert (latex(expr) ==
            r'\left\langle \Psi_{1}\left(\alpha\right) \middle\vert '
            r'\Psi_{2}\left(\beta\right) \right\rangle^{(q_{1})}')
    assert (latex(
        ket_e1 *
        ket_e2) == r'\left\lvert ee \right\rangle^{(q_{1} \otimes q_{2})}')
    assert latex(ket_e1.dag() * ket_e1) == r'1'
    assert latex(ket_g1.dag() * ket_e1) == r'0'
    ketbra = KetBra(psi1, psi2)
    assert (latex(ketbra) == r'\left\lvert \Psi_{1} \middle\rangle\!'
            r'\middle\langle \Psi_{2} \right\rvert^{(q_{1})}')
    assert (latex(
        ketbra,
        show_hs_label='subscript') == r'\left\lvert \Psi_{1} \middle\rangle\!'
            r'\middle\langle \Psi_{2} \right\rvert_{(q_{1})}')
    assert (latex(
        ketbra,
        show_hs_label=False) == r'\left\lvert \Psi_{1} \middle\rangle\!'
            r'\middle\langle \Psi_{2} \right\rvert')
    expr = KetBra(KetSymbol('Psi_1', alpha, hs=hs1),
                  KetSymbol('Psi_2', beta, hs=hs1))
    assert (
        latex(expr) ==
        r'\left\lvert \Psi_{1}\left(\alpha\right) \middle\rangle\!'
        r'\middle\langle \Psi_{2}\left(\beta\right) \right\rvert^{(q_{1})}')
    bell1 = (ket_e1 * ket_g2 - I * ket_g1 * ket_e2) / sqrt(2)
    bell2 = (ket_e1 * ket_e2 - ket_g1 * ket_g2) / sqrt(2)
    assert (latex(bell1) ==
            r'\frac{1}{\sqrt{2}} \left(\left\lvert eg \right\rangle^{(q_{1} '
            r'\otimes q_{2})} - i \left\lvert ge \right\rangle'
            r'^{(q_{1} \otimes q_{2})}\right)')
    assert (latex(bell2) ==
            r'\frac{1}{\sqrt{2}} \left(\left\lvert ee \right\rangle^{(q_{1} '
            r'\otimes q_{2})} - \left\lvert gg \right\rangle'
            r'^{(q_{1} \otimes q_{2})}\right)')
    assert (latex(bell2, show_hs_label=False) ==
            r'\frac{1}{\sqrt{2}} \left(\left\lvert ee \right\rangle - '
            r'\left\lvert gg \right\rangle\right)')
    assert BraKet.create(bell1, bell2).expand() == 0
    assert (latex(BraKet.create(
        bell1, bell2)) == r'\frac{1}{2} \left(\left\langle eg \right\rvert'
            r'^{(q_{1} \otimes q_{2})} + i \left\langle ge \right\rvert'
            r'^{(q_{1} \otimes q_{2})}\right) '
            r'\left(\left\lvert ee \right\rangle^{(q_{1} \otimes q_{2})} '
            r'- \left\lvert gg \right\rangle^{(q_{1} \otimes q_{2})}\right)')
    assert (
        latex(KetBra.create(
            bell1, bell2)) == r'\frac{1}{2} \left(\left\lvert eg \right\rangle'
        r'^{(q_{1} \otimes q_{2})} - i \left\lvert ge \right\rangle'
        r'^{(q_{1} \otimes q_{2})}\right)\left(\left\langle ee \right\rvert'
        r'^{(q_{1} \otimes q_{2})} - \left\langle gg \right\rvert'
        r'^{(q_{1} \otimes q_{2})}\right)')
    with configure_printing(tex_use_braket=True):
        expr = KetBra(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
        assert latex(expr) == r'\Ket{\Psi}\!\Bra{i}^{(0)}'
        expr = KetBra(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
        assert latex(expr) == r'\Ket{i}\!\Bra{\Psi}^{(0)}'
        expr = BraKet(KetSymbol('Psi', hs=0), BasisKet(FockIndex(i), hs=0))
        assert latex(expr) == r'\Braket{\Psi | i}^(0)'
        expr = BraKet(BasisKet(FockIndex(i), hs=0), KetSymbol('Psi', hs=0))
        assert latex(expr) == r'\Braket{i | \Psi}^(0)'