Beispiel #1
0
def rsc(station, var_list, flag_col, start, end, logfile, diagnostics = False, plots = False, doMonth = False):
    ''' Wrapper for the four individual repeating streak check tests '''
    
    times = station.time.data
    
    for v, variable in enumerate(var_list):
        
        st_var = getattr(station, variable)
                
        if len(utils.apply_filter_flags(st_var).compressed()) > 0:
        
            wind = False
            if variable == "windspeeds": wind = True
            winddir= False
            if variable == "winddirs": winddir = True

            reporting_resolution = utils.reporting_accuracy(utils.apply_filter_flags(st_var, doMonth = doMonth, start = start, end = end), winddir = winddir, plots = plots)

            limits = limits_dict[variable][reporting_resolution]  

            # need to apply flags to st_var.flags each time for filtering
            station.qc_flags[:,flag_col[v][0]] = rsc_straight_strings(st_var, times, limits[0], limits[1], start, end, reporting = reporting_resolution, wind = wind, diagnostics = diagnostics, plots = plots, dynamic = True, doMonth = doMonth)

            # no effect of final incomplete year ("month" option) as limits[2] and limits[3] fixed
            station.qc_flags[:, flag_col[v][1]], station.qc_flags[:, flag_col[v][2]] = rsc_hourly_repeats(st_var, times, limits[2], limits[3], diagnostics = diagnostics, plots = plots)


            for streak_type in range(3):
                flag_locs = np.where(station.qc_flags[:, flag_col[v][streak_type]] != 0)
                utils.print_flagged_obs_number(logfile, "Streak Check", variable, len(flag_locs[0]), noWrite = diagnostics)
                


                # copy flags into attribute
                st_var.flags[flag_locs] = 1

    station = utils.append_history(station, "Streak Check")
    
    return
Beispiel #2
0
def rsc(station, var_list, flag_col, start, end, logfile, diagnostics = False, plots = False):
    ''' Wrapper for the four individual repeating streak check tests '''
    
    times = station.time.data
    
    for v, variable in enumerate(var_list):
        
        st_var = getattr(station, variable)
                
        if len(utils.apply_filter_flags(st_var).compressed()) > 0:
        
            reporting_resolution = utils.reporting_accuracy(utils.apply_filter_flags(st_var))

            limits = limits_dict[variable][reporting_resolution]  

            wind = False
            if variable == "windspeeds": wind = True

            # need to apply flags to st_var.flags each time for filtering
            station.qc_flags[:,flag_col[v][0]] = rsc_straight_strings(st_var, times, limits[0], limits[1], start, end, reporting = reporting_resolution, wind = wind, diagnostics = diagnostics, plots = plots, dynamic = True)

            station.qc_flags[:, flag_col[v][1]], station.qc_flags[:, flag_col[v][2]]= rsc_hourly_repeats(st_var, times, limits[2], limits[3], diagnostics = diagnostics, plots = plots)


            for streak_type in range(3):
                flag_locs = np.where(station.qc_flags[:, flag_col[v][streak_type]] != 0)
                if plots or diagnostics:
                    utils.print_flagged_obs_number(logfile, "Streak Check", variable, len(flag_locs[0]), noWrite = True)
                else:
                    utils.print_flagged_obs_number(logfile, "Streak Check", variable, len(flag_locs[0]))


                # copy flags into attribute
                st_var.flags[flag_locs] = 1

    station = utils.append_history(station, "Streak Check")
    
    return
Beispiel #3
0
def sc(station,
       variable_list,
       flag_col,
       start,
       end,
       logfile,
       diagnostics=False,
       plots=False,
       doMonth=False):
    '''
    Spike Check, looks for spikes up to 3 observations long, using thresholds
    calculated from the data itself.

    :param MetVar station: the station object
    :param list variable_list: list of observational variables to process
    :param list flag_col: the columns to set on the QC flag array
    :param datetime start: dataset start time
    :param datetime end: dataset end time
    :param file logfile: logfile to store outputs
    :param bool plots: do plots
    :param bool doMonth: account for incomplete months

    :returns:    
    '''
    print "refactor"

    for v, variable in enumerate(variable_list):

        flags = station.qc_flags[:, flag_col[v]]

        st_var = getattr(station, variable)

        # if incomplete year, mask all obs for the incomplete bit
        all_filtered = utils.apply_filter_flags(st_var,
                                                doMonth=doMonth,
                                                start=start,
                                                end=end)

        reporting_resolution = utils.reporting_accuracy(
            utils.apply_filter_flags(st_var))
        # to match IDL system - should never be called as would mean no data
        if reporting_resolution == -1:
            reporting_resolution = 1

        month_ranges = utils.month_starts_in_pairs(start, end)
        month_ranges = month_ranges.reshape(-1, 12, 2)

        good, = np.where(all_filtered.mask == False)

        full_time_diffs = np.ma.zeros(len(all_filtered), dtype=int)
        full_time_diffs.mask = copy.deepcopy(all_filtered.mask[:])
        full_time_diffs[good[:-1]] = station.time.data[
            good[1:]] - station.time.data[good[:-1]]

        # develop critical values using clean values
        # NOTE 4/7/14 - make sure that Missing and Flagged values treated appropriately
        print "sort the differencing if values were flagged rather than missing"

        full_filtered_diffs = np.ma.zeros(len(all_filtered))
        full_filtered_diffs.mask = copy.deepcopy(all_filtered.mask[:])
        full_filtered_diffs[good[:-1]] = all_filtered.compressed(
        )[1:] - all_filtered.compressed()[:-1]

        # test all values
        good_to_uncompress, = np.where(st_var.data.mask == False)
        full_value_diffs = np.ma.zeros(len(st_var.data))
        full_value_diffs.mask = copy.deepcopy(st_var.data.mask[:])
        full_value_diffs[good_to_uncompress[:-1]] = st_var.data.compressed(
        )[1:] - st_var.data.compressed()[:-1]

        # convert to compressed time to match IDL
        value_diffs = full_value_diffs.compressed()
        time_diffs = full_time_diffs.compressed()
        filtered_diffs = full_filtered_diffs.compressed()
        flags = flags[good_to_uncompress]

        critical_values = np.zeros([9, 12])
        critical_values.fill(st_var.mdi)

        # link observation to calendar month
        month_locs = np.zeros(full_time_diffs.shape, dtype=int)

        for month in range(12):
            for year in range(month_ranges.shape[0]):

                if year == 0:
                    this_month_time_diff = full_time_diffs[month_ranges[
                        year, month, 0]:month_ranges[year, month, 1]]
                    this_month_filtered_diff = full_filtered_diffs[
                        month_ranges[year, month, 0]:month_ranges[year, month,
                                                                  1]]
                else:
                    this_month_time_diff = np.ma.concatenate([
                        this_month_time_diff,
                        full_time_diffs[month_ranges[year, month,
                                                     0]:month_ranges[year,
                                                                     month, 1]]
                    ])
                    this_month_filtered_diff = np.ma.concatenate([
                        this_month_filtered_diff,
                        full_filtered_diffs[month_ranges[year, month,
                                                         0]:month_ranges[year,
                                                                         month,
                                                                         1]]
                    ])

                month_locs[month_ranges[year, month,
                                        0]:month_ranges[year, month,
                                                        1]] = month

            for delta in range(1, 9):

                locs = np.ma.where(this_month_time_diff == delta)

                if len(locs[0]) >= 100:

                    iqr = utils.IQR(this_month_filtered_diff[locs])

                    if iqr == 0. and delta == 1:
                        critical_values[delta - 1, month] = 6.
                    elif iqr == 0:
                        critical_values[delta - 1, month] = st_var.mdi
                    else:
                        critical_values[delta - 1, month] = 6. * iqr

                    # January 2015 - changed to dynamically calculating the thresholds if less than IQR method ^RJHD

                    if plots:
                        import calendar
                        title = "{}, {}-hr differences".format(
                            calendar.month_name[month + 1], delta)
                        line_label = st_var.name
                        xlabel = "First Difference Magnitudes"
                    else:
                        title, line_label, xlabel = "", "", ""

                    threshold = utils.get_critical_values(
                        this_month_filtered_diff[locs],
                        binmin=0,
                        binwidth=0.5,
                        plots=plots,
                        diagnostics=diagnostics,
                        title=title,
                        line_label=line_label,
                        xlabel=xlabel,
                        old_threshold=critical_values[delta - 1, month])

                    if threshold < critical_values[delta - 1, month]:
                        critical_values[delta - 1, month] = threshold

                    if plots or diagnostics:

                        print critical_values[delta - 1, month], iqr, 6 * iqr

        month_locs = month_locs[good_to_uncompress]
        if diagnostics:
            print critical_values[0, :]

        # not less than 5x reporting accuracy
        good_critical_values = np.where(critical_values != st_var.mdi)
        low_critical_values = np.where(
            critical_values[good_critical_values] <= 5. * reporting_resolution)
        temporary = critical_values[good_critical_values]
        temporary[low_critical_values] = 5. * reporting_resolution
        critical_values[good_critical_values] = temporary

        if diagnostics:
            print critical_values[0, :], 5. * reporting_resolution

        # check hourly against 2 hourly, if <2/3 the increase to avoid crazy rejection rate
        for month in range(12):
            if critical_values[0, month] != st_var.mdi and critical_values[
                    1, month] != st_var.mdi:
                if critical_values[0, month] / critical_values[1,
                                                               month] <= 0.66:
                    critical_values[0,
                                    month] = 0.66 * critical_values[1, month]

        if diagnostics:
            print "critical values"
            print critical_values[0, :]

        # get time differences for unfiltered data

        full_time_diffs = np.ma.zeros(len(st_var.data), dtype=int)
        full_time_diffs.mask = copy.deepcopy(st_var.data.mask[:])
        full_time_diffs[good_to_uncompress[:-1]] = station.time.data[
            good_to_uncompress[1:]] - station.time.data[
                good_to_uncompress[:-1]]
        time_diffs = full_time_diffs.compressed()

        # go through each difference, identify which month it is in if passes spike thresholds

        # spikes at the beginning or ends of sections
        for t in np.arange(len(time_diffs)):
            if (np.abs(time_diffs[t - 1]) > 240) and (np.abs(time_diffs[t]) <
                                                      3):
                # 10 days before but short gap thereafter

                next_values = st_var.data[good_to_uncompress[t + 1:]]
                good, = np.where(next_values.mask == False)

                next_median = np.ma.median(next_values[good[:10]])

                next_diff = np.abs(value_diffs[t])  # out of spike
                median_diff = np.abs(next_median -
                                     st_var.data[good_to_uncompress[t]]
                                     )  # are the remaining onees

                if (critical_values[time_diffs[t] - 1, month_locs[t]] !=
                        st_var.mdi):

                    # jump from spike > critical but average after < critical / 2
                    if (np.abs(median_diff) < critical_values[time_diffs[t] - 1, month_locs[t]] / 2.) and\
                        (np.abs(next_diff) > critical_values[time_diffs[t] - 1, month_locs[t]]) :

                        flags[t] = 1
                        if plots or diagnostics:
                            sc_diagnostics_and_plots(station.time.data,
                                                     st_var.data,
                                                     good_to_uncompress[t],
                                                     good_to_uncompress[t + 1],
                                                     start,
                                                     variable,
                                                     plots=plots)

            elif (np.abs(time_diffs[t - 1]) < 3) and (np.abs(time_diffs[t]) >
                                                      240):
                # 10 days after but short gap before

                prev_values = st_var.data[good_to_uncompress[:t - 1]]
                good, = np.where(prev_values.mask == False)

                prev_median = np.ma.median(prev_values[good[-10:]])

                prev_diff = np.abs(value_diffs[t - 1])
                median_diff = np.abs(prev_median -
                                     st_var.data[good_to_uncompress[t]])

                if (critical_values[time_diffs[t - 1] - 1, month_locs[t]] !=
                        st_var.mdi):

                    # jump into spike > critical but average before < critical / 2
                    if (np.abs(median_diff) < critical_values[time_diffs[t - 1] - 1, month_locs[t]] / 2.) and\
                        (np.abs(prev_diff) > critical_values[time_diffs[t - 1] - 1, month_locs[t]]) :

                        flags[t] = 1
                        if plots or diagnostics:
                            sc_diagnostics_and_plots(station.time.data,
                                                     st_var.data,
                                                     good_to_uncompress[t],
                                                     good_to_uncompress[t + 1],
                                                     start,
                                                     variable,
                                                     plots=plots)
        ''' this isn't the nicest way, but a direct copy from IDL
            masked arrays might help remove some of the lines

            Also, this is relatively slow'''

        for t in np.arange(len(time_diffs)):
            for spk_len in [1, 2, 3]:
                if t >= spk_len and t < len(time_diffs) - spk_len:

                    # check if time differences are appropriate, for multi-point spikes
                    if (np.abs(time_diffs[t - spk_len]) <= spk_len * 3) and\
                    (np.abs(time_diffs[t]) <= spk_len * 3) and\
                    (time_diffs[t - spk_len - 1] - 1 < spk_len * 3) and\
                    (time_diffs[t + 1] - 1 < spk_len * 3) and \
                    ((spk_len == 1) or \
                    ((spk_len == 2) and (np.abs(time_diffs[t - spk_len + 1]) <= spk_len * 3)) or \
                    ((spk_len == 3) and (np.abs(time_diffs[t - spk_len + 1]) <= spk_len * 3) and (np.abs(time_diffs[t - spk_len + 2]) <= spk_len * 3))):

                        # check if differences are valid
                        if (value_diffs[t - spk_len] != st_var.mdi) and \
                        (value_diffs[t - spk_len] != st_var.fdi) and \
                        (critical_values[time_diffs[t - spk_len] - 1, month_locs[t]] != st_var.mdi):

                            # if exceed critical values
                            if (np.abs(value_diffs[t - spk_len]) >=
                                    critical_values[time_diffs[t - spk_len] -
                                                    1, month_locs[t]]):

                                # are signs of two differences different
                                if (math.copysign(1, value_diffs[t])
                                        != math.copysign(
                                            1, value_diffs[t - spk_len])):

                                    # are within spike differences small
                                    if (spk_len == 1) or\
                                    ((spk_len == 2) and (np.abs(value_diffs[t - spk_len + 1]) < critical_values[time_diffs[t - spk_len + 1] -1, month_locs[t]] / 2.)) or \
                                    ((spk_len == 3) and (np.abs(value_diffs[t - spk_len + 1]) < critical_values[time_diffs[t - spk_len + 1] -1, month_locs[t]] / 2.) and\
                                      (np.abs(value_diffs[t - spk_len + 2]) < critical_values[time_diffs[t - spk_len + 2] -1, month_locs[t]] / 2.)):

                                        # check if following value is valid
                                        if (value_diffs[t] != st_var.mdi) and (critical_values[time_diffs[t] - 1, month_locs[t]] != st_var.mdi) and\
                                            (value_diffs[t] != st_var.fdi):

                                            # and if at least critical value
                                            if (np.abs(value_diffs[t]) >=
                                                    critical_values[
                                                        time_diffs[t] - 1,
                                                        month_locs[t]]):

                                                # test if surrounding differences below 1/2 critical value
                                                if (np.abs(
                                                        value_diffs[t - spk_len
                                                                    - 1]
                                                ) <= critical_values[
                                                        time_diffs[t -
                                                                   spk_len -
                                                                   1] - 1,
                                                        month_locs[t]] / 2.):
                                                    if (np.abs(
                                                            value_diffs[t + 1]
                                                    ) <= critical_values[
                                                            time_diffs[t + 1] -
                                                            1, month_locs[t]] /
                                                            2.):

                                                        # set the flags
                                                        flags[t - spk_len +
                                                              1:t + 1] = 1

                                                        if plots or diagnostics:

                                                            sc_diagnostics_and_plots(
                                                                station.time.
                                                                data,
                                                                st_var.data,
                                                                good_to_uncompress[
                                                                    t -
                                                                    spk_len +
                                                                    1],
                                                                good_to_uncompress[
                                                                    t + 1],
                                                                start,
                                                                variable,
                                                                plots=plots)

        station.qc_flags[good_to_uncompress, flag_col[v]] = flags

        flag_locs, = np.where(station.qc_flags[:, flag_col[v]] != 0)

        utils.print_flagged_obs_number(logfile,
                                       "Spike",
                                       variable,
                                       len(flag_locs),
                                       noWrite=diagnostics)  # additional flags

        # copy flags into attribute
        st_var.flags[flag_locs] = 1

        # matches 030660 - but with adapted IDL
        # matches 030220 OK, but finds more but all are reasonable 1/9/14

        do_interactive = False
        if plots and do_interactive == True:
            import matplotlib.pyplot as plt

            plot_times = utils.times_hours_to_datetime(station.time.data,
                                                       start)

            plt.clf()
            plt.plot(plot_times, all_filtered, 'bo', ls='-')
            flg = np.where(flags[:, flag_col[v]] == 1)
            plt.plot(plot_times[flg], all_filtered[flg], 'ro', markersize=10)
            plt.show()

    station = utils.append_history(station, "Spike Check")

    return  # sc
Beispiel #4
0
def neighbour_checks(station_info, restart_id = "", end_id = "", distances=np.array([]), angles=np.array([]), second = False, masking = False, doZip=False, plots = False, diagnostics = False):
    """
    Run through neighbour checks on list of stations passed
    
    :param list station_info: list of lists - [[ID, lat, lon, elev]] - strings
    :param array distances: array of distances between station pairs
    :param array angles: array of angles between station pairs
    :param bool second: do the second run
    :param bool masking: apply the flags to the data to mask the observations.

    """
    first = not second

    qc_code_version = subprocess.check_output(['svnversion']).strip()

    # if distances and angles not calculated, then do so
    if (len(distances) == 0) or (len(angles) == 0):
        print "calculating distances and bearings matrix"
        distances, angles = get_distances_angles(station_info)

    # extract before truncate the array
    neighbour_elevations = np.array(station_info[:,3], dtype=float) 
    neighbour_ids        = np.array(station_info[:,0])
    neighbour_info       = np.array(station_info[:,:])

    # sort truncated run
    startindex = 0
    if restart_id != "":
        startindex, = np.where(station_info[:,0] == restart_id)


    if end_id != "":
        endindex, = np.where(station_info[:,0] == end_id)
        if endindex != len(station_info) -1:
            station_info = station_info[startindex: endindex+1]
            distances = distances[startindex:endindex+1,:]
            angles = angles[startindex:endindex+1,:]
        else:
            station_info = station_info[startindex:]
            distances = distances[startindex:,:]
            angles = angles[startindex:,:]
    else:
        station_info = station_info[startindex:]
        distances = distances[startindex:,:]
        angles = angles[startindex:,:]
        

    # process each neighbour
    for st, stat in enumerate(station_info):       

        print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S")
        print "Neighbour Check"
        print "{:35s} {}".format("Station Identifier :", stat[0])

        if not plots and not diagnostics:
            logfile = file(LOG_OUTFILE_LOCS+stat[0]+'.log','a') # append to file if second iteration.
            logfile.write(dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n"))
            logfile.write("Neighbour Check\n")
            logfile.write("{:35s} {}\n".format("Station Identifier :", stat[0]))
        else:
            logfile = ""

        process_start_time = time.time()

        station = utils.Station(stat[0], float(stat[1]), float(stat[2]), float(stat[3]))

        # if running through the first time
        if first:

            if os.path.exists(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc.gz")):
                # if gzip file, unzip here
                subprocess.call(["gunzip",os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc.gz")])
                time.sleep(5) # make sure it is unzipped before proceeding

            # read in the data
            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc"), station, process_vars, carry_thru_vars, diagnostics = diagnostics)

            if plots or diagnostics:
                print "{:35s}  {}\n".format("Total station record size :",len(station.time.data))
            else:
                logfile.write("{:35s}  {}\n".format("Total station record size :",len(station.time.data)))

            match_to_compress = utils.create_fulltimes(station, process_vars, DATASTART, DATAEND, carry_thru_vars)

        # or if second pass through?
        elif second:
            if os.path.exists(os.path.join(NETCDF_DATA_LOCS, station.id + "internal2.nc.gz")):
                # if gzip file, unzip here
                subprocess.call(["gunzip",os.path.join(NETCDF_DATA_LOCS, station.id + "_internal2.nc.gz")])
                time.sleep(5) # make sure it is unzipped before proceeding

            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal2.nc"), station, process_vars, carry_thru_vars, diagnostics = diagnostics)
            if plots or diagnostics:
                print "{:35s}  {}\n".format("Total station record size :",len(station.time.data))
            else:
                logfile.write("{:35s}  {}\n".format("Total station record size :",len(station.time.data)))

            match_to_compress = utils.create_fulltimes(station, process_vars, DATASTART, DATAEND, carry_thru_vars)


        # select neighbours
        neighbour_distances  = distances[st,:]
        neighbour_bearings   = angles[st,:]

        # have to add in start index so that can use location in distance file.
        # neighbours = n_utils.get_neighbours(st+startindex, np.float(stat[3]), neighbour_distances, neighbour_bearings, neighbour_elevations)

        # return all neighbours up to a limit from the distance and elevation offsets (500km and 300m respectively)
        neighbours, neighbour_quadrants = n_utils.get_all_neighbours(st+startindex, np.float(stat[3]), neighbour_distances, neighbour_bearings, neighbour_elevations)

        if plots or diagnostics:
            print "{:14s} {:10s} {:10s}".format("Neighbour","Distance","Elevation")
            for n in neighbours:
                print "{:14s} {:10.1f} {:10.1f}".format(neighbour_ids[n],neighbour_distances[n],neighbour_elevations[n])

        else:
            logfile.write("{:14s} {:10s} {:10s}\n".format("Neighbour","Distance","Elevation"))
            for n in neighbours:
                logfile.write("{:14s} {:10.1f} {:10.1f}\n".format(neighbour_ids[n],neighbour_distances[n],neighbour_elevations[n]))

        # if sufficient neighbours
        if len(neighbours) >= 3:

            for variable, col in FLAG_OUTLIER_DICT.items():
                # NOTE - this requires multiple reads of the same file
                #      but does make it easier to understand and code

                st_var = getattr(station, variable)

                if plots or diagnostics:
                    print "Length of {} record: {}".format(variable, len(st_var.data.compressed()))
                else:
                    logfile.write("Length of {} record: {}\n".format(variable, len(st_var.data.compressed())))

                
                if len(st_var.data.compressed()) > 0:

                    final_neighbours = n_utils.select_neighbours(station, variable, neighbour_info[neighbours], neighbours, neighbour_distances[neighbours], neighbour_quadrants, NETCDF_DATA_LOCS, DATASTART, DATAEND, logfile, second = second, diagnostics = diagnostics, plots = plots)


                    # now read in final set of neighbours and process

                    neigh_flags = np.zeros(len(station.time.data)) # count up how many neighbours think this obs is bad
                    neigh_count = np.zeros(len(station.time.data)) # number of neighbours at each time stamp
                    dpd_flags = np.zeros(len(station.time.data)) # number of neighbours at each time stamp
                    reporting_accuracies = np.zeros(len(neighbours)) # reporting accuracy of each neighbour

                    all_data = np.ma.zeros([len(final_neighbours), len(station.time.data)]) # store all the neighbour values

                    for nn, nn_loc in enumerate(final_neighbours):

                        neigh_details = neighbour_info[nn_loc]
                        neigh = utils.Station(neigh_details[0], float(neigh_details[1]), float(neigh_details[2]), float(neigh_details[3]))

                        if first:
                            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, neigh.id + "_internal.nc"), neigh, [variable], diagnostics = diagnostics, read_input_station_id = False)
                        elif second:
                            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, neigh.id + "_internal2.nc"), neigh, [variable], diagnostics = diagnostics, read_input_station_id = False)

                        dummy = utils.create_fulltimes(neigh, [variable], DATASTART, DATAEND, [], do_input_station_id = False)

                        all_data[nn, :] = utils.apply_filter_flags(getattr(neigh, variable))

                        if diagnostics:
                            print neigh_details

                        n_utils.detect(station, neigh, variable, neigh_flags, neigh_count, DATASTART, DATAEND, distance = neighbour_distances[nn_loc], diagnostics = diagnostics, plots = plots)

                        reporting_accuracies[nn] = utils.reporting_accuracy(getattr(neigh,variable).data)

                        dpd_flags += neigh.qc_flags[:,31]
                    # gone through all neighbours


                    # if at least 2/3 of neighbours have flagged this point (and at least 3 neighbours)
                    some_flags, = np.where(neigh_flags > 0)            
                    outlier_locs, = np.where(np.logical_and((neigh_count[some_flags] >= 3),(neigh_flags[some_flags].astype("float")/neigh_count[some_flags] > 2./3.)))

                    # flag where < 3 neighbours
                    locs = np.where(neigh_count[some_flags] < 3)
                    station.qc_flags[some_flags[locs], col] = -1

                    if len(outlier_locs) >= 1:
                        station.qc_flags[some_flags[outlier_locs], col] = 1

                        # print number flagged and copy into attribute
                        if plots or diagnostics:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs), noWrite = True)
                        else:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs))
                        st_var = getattr(station, variable)
                        st_var.flags[some_flags[outlier_locs]] = 1

                    else:
                        if plots or diagnostics:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs), noWrite = True)
                        else:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs))


                    if plots:
                        n_utils.plot_outlier(station, variable, some_flags[outlier_locs], all_data, DATASTART)

                    # unflagging using neighbours
                    n_utils.do_unflagging(station, variable, all_data, reporting_accuracies, neigh_count, dpd_flags, FLAG_COL_DICT, DATASTART, logfile, plots = plots, diagnostics = diagnostics)

                else:
                    if plots or diagnostics:
                        print "No observations to assess for {}".format(variable)
                    else:
                        logfile.write("No observations to assess for {}\n".format(variable))
                    


            # variable loop
        else:
            if plots or diagnostics:
                print "Fewer than 3 neighbours"
            else:
                logfile.write("Fewer than 3 neighbours\n")

        print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S")
        print "processing took {:4.0f}s\n\n".format(time.time() - process_start_time)

        # end of neighbour check
	utils.append_history(station, "Neighbour Outlier Check")

        # clean up months 

        qc_tests.clean_up.clu(station, ["temperatures","dewpoints","windspeeds","winddirs","slp"], [44,45,46,47,48], FLAG_COL_DICT, DATASTART, DATAEND, logfile, plots = plots)


        if diagnostics or plots: raw_input("stop")

        # masking (at least call from here - optional call from internal?)

        # write to file
        if first:
            ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_external.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            # gzip the raw file
        elif second:
            ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_external2.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            # gzip the raw file
 

        # masking - apply the flags and copy masked data to flagged_obs attribute
        if masking:

            station = utils.mask(station, process_vars, logfile)

        # write to file
            if first:
                ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_mask.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            elif second:
                ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_mask2.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)

        if plots or diagnostics:
            print "Masking completed\n"
            print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n")
            print "processing took {:4.0f}s\n\n".format(time.time() - process_start_time)
        else:
            logfile.write("Masking completed\n")
            logfile.write(dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n"))
            logfile.write("processing took {:4.0f}s\n\n".format(time.time() - process_start_time))
            logfile.close()
            
    # gzip up all the raw files
    if doZip:
        for st, stat in enumerate(station_info):       
            if first:
                subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_internal.nc")])
                if masking:
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_external.nc")])
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_mask.nc")])

            elif second:
                subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_internal2.nc")])
                if masking:
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_external2.nc")])
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_mask2.nc")])

    print "Neighbour Checks completed\n"

    return # neighbour_checks 
Beispiel #5
0
def fvc(station,
        variable_list,
        flag_col,
        start,
        end,
        logfile,
        diagnostics=False,
        plots=False,
        doMonth=False):
    '''
    Check for certain values occurring more frequently than would be expected
    
    :param object station: station object to process
    :param list variable_list: list of variables to process
    :param list flag_col: columns to fill in flag array
    :param datetime start: datetime object of start of data
    :param datetime end: datetime object of end of data
    :param file logfile: logfile to store outputs
    :param bool diagnostics: produce extra diagnostic output
    :param bool plots: produce plots
    :param bool month: ignore months after last complete year/season for distribution
    '''

    MIN_DATA_REQUIRED = 500  # to create histogram for complete record
    MIN_DATA_REQUIRED_YEAR = 100  # to create histogram

    month_ranges = utils.month_starts_in_pairs(start, end)

    month_ranges_years = month_ranges.reshape(-1, 12, 2)

    for v, variable in enumerate(variable_list):

        st_var = getattr(station, variable)

        reporting_accuracy = utils.reporting_accuracy(
            utils.apply_filter_flags(st_var))

        # apply flags - for detection only
        filtered_data = utils.apply_filter_flags(st_var,
                                                 doMonth=doMonth,
                                                 start=start,
                                                 end=end)

        for season in range(5):  # Year,MAM,JJA,SON,JF+D

            if season == 0:
                # all year
                season_data = np.ma.masked_values(filtered_data.compressed(),
                                                  st_var.fdi)
                thresholds = [30, 20, 10]

            else:
                thresholds = [20, 15, 10]
                season_data = np.ma.array([])

                for y, year in enumerate(month_ranges_years):
                    # churn through months extracting data, accounting for fdi and concatenating together
                    if season == 1:
                        #mam
                        season_data = np.ma.concatenate([
                            season_data,
                            np.ma.masked_values(
                                filtered_data[year[2][0]:year[4][-1]],
                                st_var.fdi)
                        ])
                    elif season == 2:
                        #jja
                        season_data = np.ma.concatenate([
                            season_data,
                            np.ma.masked_values(
                                filtered_data[year[5][0]:year[7][-1]],
                                st_var.fdi)
                        ])
                    elif season == 3:
                        #son
                        season_data = np.ma.concatenate([
                            season_data,
                            np.ma.masked_values(
                                filtered_data[year[8][0]:year[10][-1]],
                                st_var.fdi)
                        ])
                    elif season == 4:
                        #d+jf
                        season_data = np.ma.concatenate([
                            season_data,
                            np.ma.masked_values(
                                filtered_data[year[0][0]:year[1][-1]],
                                st_var.fdi)
                        ])
                        season_data = np.ma.concatenate([
                            season_data,
                            np.ma.masked_values(
                                filtered_data[year[-1][0]:year[-1][-1]],
                                st_var.fdi)
                        ])

            season_data = season_data.compressed()

            if len(season_data) > MIN_DATA_REQUIRED:

                if 0 < reporting_accuracy <= 0.5:  # -1 used as missing value
                    bins, bincenters = utils.create_bins(season_data, 0.5)
                else:
                    bins, bincenters = utils.create_bins(season_data, 1.0)

                hist, binEdges = np.histogram(season_data, bins=bins)

                if plots:
                    plot_hist, bincenters = fvc_plot_setup(season_data,
                                                           hist,
                                                           binEdges,
                                                           st_var.name,
                                                           title="%s" %
                                                           (SEASONS[season]))

                bad_bin = np.zeros(len(hist))

                # scan through bin values and identify bad ones
                for e, element in enumerate(hist):
                    if e > 3 and e <= (len(hist) - 3):
                        # don't bother with first three or last three bins
                        seven_bins = hist[e - 3:e + 3 + 1]
                        if (seven_bins[3]
                                == seven_bins.max()) and (seven_bins[3] != 0):
                            # is local maximum and != zero
                            if (seven_bins[3] / float(seven_bins.sum()) >=
                                    0.5) and (seven_bins[3] >= thresholds[0]):
                                # contains >50% of data and is greater than threshold
                                bad_bin[e] = 1

                            # for plotting remove good bins
                            else:
                                if plots: plot_hist[e] = 1e-1
                        else:
                            if plots: plot_hist[e] = 1e-1
                    else:
                        if plots: plot_hist[e] = 1e-1

                if plots:
                    import matplotlib.pyplot as plt
                    plt.step(bincenters, plot_hist, 'r-', where='mid')
                    plt.show()

                # having identified possible bad bins, check each year in turn, on unfiltered data
                for y, year in enumerate(month_ranges_years):

                    if season == 0:
                        # year
                        year_data = np.ma.masked_values(
                            st_var.data[year[0][0]:year[-1][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[0][0]:year[-1][-1],
                                                      flag_col[v]]
                    elif season == 1:
                        #mam
                        year_data = np.ma.masked_values(
                            st_var.data[year[2][0]:year[4][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[2][0]:year[4][-1],
                                                      flag_col[v]]
                    elif season == 2:
                        #jja
                        year_data = np.ma.masked_values(
                            st_var.data[year[5][0]:year[7][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[5][0]:year[7][-1],
                                                      flag_col[v]]
                    elif season == 3:
                        #son
                        year_data = np.ma.masked_values(
                            st_var.data[year[8][0]:year[10][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[8][0]:year[10][-1],
                                                      flag_col[v]]
                    elif season == 4:
                        #d+jf
                        year_data = np.ma.concatenate([np.ma.masked_values(st_var.data[year[0][0]:year[1][-1]], st_var.fdi),\
                                                       np.ma.masked_values(st_var.data[year[-1][0]:year[-1][-1]], st_var.fdi)])
                        year_flags = np.append(
                            station.qc_flags[year[0][0]:year[1][-1],
                                             flag_col[v]],
                            station.qc_flags[year[-1][0]:year[-1][-1],
                                             flag_col[v]])

                    if len(year_data.compressed()) > MIN_DATA_REQUIRED_YEAR:

                        hist, binEdges = np.histogram(year_data.compressed(),
                                                      bins=bins)

                        if plots:
                            plot_hist, bincenters = fvc_plot_setup(
                                year_data.compressed(),
                                hist,
                                binEdges,
                                st_var.name,
                                title="%s - %s" %
                                (y + start.year, SEASONS[season]))

                        for e, element in enumerate(hist):

                            if bad_bin[e] == 1:
                                # only look at pre-identified bins

                                if e >= 3 and e <= (len(hist) - 3):
                                    # don't bother with first three or last three bins
                                    seven_bins = hist[e - 3:e + 3 +
                                                      1].astype('float')
                                    if (seven_bins[3] == seven_bins.max()
                                        ) and (seven_bins[3] != 0):
                                        # is local maximum and != zero
                                        if (seven_bins[3]/seven_bins.sum() >= 0.5 and seven_bins[3] >= thresholds[1]) \
                                            or (seven_bins[3]/seven_bins.sum() >= 0.9 and seven_bins[3] >= thresholds[2]):
                                            # contains >50% or >90% of data and is greater than appropriate threshold

                                            # Flag these data
                                            bad_points = np.where(
                                                (year_data >= binEdges[e]) &
                                                (year_data < binEdges[e + 1]))
                                            year_flags[bad_points] = 1

                                        # for plotting remove good bins
                                        else:
                                            if plots: plot_hist[e] = 1e-1
                                    else:
                                        if plots: plot_hist[e] = 1e-1
                                else:
                                    if plots: plot_hist[e] = 1e-1
                            else:
                                if plots: plot_hist[e] = 1e-1

                        if diagnostics or plots:
                            nflags = len(np.where(year_flags != 0)[0])
                            print "{} {}".format(y + start.year, nflags)

                        if plots:
                            if nflags > 0:
                                plt.step(bincenters,
                                         plot_hist,
                                         'r-',
                                         where='mid')
                                plt.show()
                            else:
                                plt.clf()

                    # copy flags back

                    if season == 0:
                        station.qc_flags[year[0][0]:year[-1][-1],
                                         flag_col[v]] = year_flags
                    elif season == 1:
                        station.qc_flags[year[2][0]:year[4][-1],
                                         flag_col[v]] = year_flags
                    elif season == 2:
                        station.qc_flags[year[5][0]:year[7][-1],
                                         flag_col[v]] = year_flags
                    elif season == 3:
                        station.qc_flags[year[8][0]:year[10][-1],
                                         flag_col[v]] = year_flags
                    elif season == 4:
                        split = len(station.qc_flags[year[0][0]:year[1][-1],
                                                     flag_col[v]])
                        station.qc_flags[year[0][0]:year[1][-1],
                                         flag_col[v]] = year_flags[:split]
                        station.qc_flags[year[-1][0]:year[-1][-1],
                                         flag_col[v]] = year_flags[split:]

        flag_locs = np.where(station.qc_flags[:, flag_col[v]] != 0)
        utils.print_flagged_obs_number(logfile,
                                       "Frequent Value",
                                       variable,
                                       len(flag_locs[0]),
                                       noWrite=diagnostics)

        # copy flags into attribute
        st_var.flags[flag_locs] = 1

    station = utils.append_history(station, "Frequent Values Check")

    return  # fvc
Beispiel #6
0
def evc(station, variable_list, flag_col, start, end, logfile, diagnostics = False, plots = False, idl = False):
    
    if plots or diagnostics:
        import matplotlib.pyplot as plt
        import calendar

    
    # very similar to climatological check - ensure that not duplicating
    
    for v, variable in enumerate(variable_list):
    
        st_var = getattr(station, variable)
    
        reporting_resolution = utils.reporting_accuracy(utils.apply_filter_flags(st_var))
        reporting_freq = utils.reporting_frequency(utils.apply_filter_flags(st_var))
   
        month_ranges = utils.month_starts_in_pairs(start, end)
        month_ranges = month_ranges.reshape(-1,12,2)

        month_data_count = np.zeros(month_ranges.shape[0:2])

        # for each month
        for month in range(12):

            # set up hourly climatologies
            hourly_clims = np.zeros(24)
            hourly_clims.fill(st_var.data.fill_value)

            this_month, year_ids, month_data_count[:,month] = utils.concatenate_months(month_ranges[:,month,:], st_var.data, hours = True)

            
            # # extract each year and append together
            # year_ids = [] # counter to determine which year each day corresponds to
            # for year in range(month_ranges.shape[0]):
                
            #     this_year = st_var.data[month_ranges[year,month][0]:month_ranges[year,month][1]]
            #     if year == 0:
            #         # store so can access each hour of day separately
            #         this_month = this_year.reshape(-1,24)
                    
            #         year_ids = [year for x in range(this_month.shape[0])]
                    
            #         month_data_count[year,month] = len(this_year.compressed())
                    
            #     else:
            #         this_year = this_year.reshape(-1,24)
                       
            #         this_month = np.ma.concatenate((this_month, this_year), axis = 0)
                    
            #         year_ids.extend([year for x in range(this_year.shape[0])])
                    
            #         month_data_count[year,month] = len(this_year.compressed())

                
                  
            # winsorize and get hourly climatology 
            for h in range(24):
                
                this_hour = this_month[:,h]
                
                if len(this_hour.compressed()) > 100:

                    
                    # winsorize & climatologies - done to match IDL
                    if idl:
                        this_hour_winsorized = utils.winsorize(np.append(this_hour.compressed(), -999999), 0.05, idl = idl)
                        hourly_clims[h] = np.ma.sum(this_hour_winsorized)/(len(this_hour_winsorized) - 1)
                        
                    else:
                        this_hour_winsorized = utils.winsorize(this_hour.compressed(), 0.05, idl = idl)
                        hourly_clims[h] = np.ma.mean(this_hour_winsorized)
                    
            
            hourly_clims = np.ma.masked_where(hourly_clims == st_var.data.fill_value, hourly_clims)           
            anomalies = this_month - np.tile(hourly_clims, (this_month.shape[0], 1))
            
            # extract IQR of anomalies (using 1/2 value to match IDL)
            if len(anomalies.compressed()) >= 10:
                
                iqr = utils.IQR(anomalies.compressed().reshape(-1)) / 2. # to match IDL
                if iqr < 1.5: iqr = 1.5

            else:
                iqr = st_var.mdi
            
            normed_anomalies = anomalies / iqr
            

            variances = np.ma.zeros(month_ranges.shape[0])
            variances.mask = [False for i in range(month_ranges.shape[0])]
            rep_accuracies = np.zeros(month_ranges.shape[0])
            rep_freqs = np.zeros(month_ranges.shape[0])
            
            variances.fill(st_var.mdi)
            rep_accuracies.fill(st_var.mdi)
            rep_freqs.fill(st_var.mdi)
                
            year_ids = np.array(year_ids)
            
            # extract variance of normalised anomalies for each year
            for y, year in enumerate(range(month_ranges.shape[0])):
            
                year_locs = np.where(year_ids == y)
            
                this_year = normed_anomalies[year_locs,:]
                this_year = this_year.reshape(-1)
                
            # end of similarity with Climatological check
            
                if len(this_year.compressed()) >= 30:
            
                    variances[y] = utils.mean_absolute_deviation(this_year, median = True)
                    
                    rep_accuracies[y] = utils.reporting_accuracy(this_year)
                    rep_freqs[y] = utils.reporting_frequency(this_year)

                else:
                    variances.mask[y] = True

            good = np.where(month_data_count[:,month] >= 100)
            
            # get median and IQR of variance for all years for this month
            if len(good[0]) >= 10:
                
                median_variance = np.median(variances[good])
                
                iqr_variance = utils.IQR(variances[good]) / 2. # to match IDL
                
                if iqr_variance < 0.01: iqr_variance = 0.01
            else:
                
                median_variance = st_var.mdi
                iqr_variance = st_var.mdi

                
            # if SLP, then get median and MAD of SLP and windspeed for month
            if variable in ["slp", "windspeeds"]:
                
                winds = getattr(station, "windspeeds")
                slp = getattr(station, "slp")
        
                # refactor this as similar in style to how target data extracted  
                for y, year in enumerate(range(month_ranges.shape[0])):
                    
                    if y == 0:
                        winds_year = winds.data[month_ranges[year,month][0]:month_ranges[year,month][1]]
                        winds_month = winds_year.reshape(-1,24)
                                            
                        slp_year = slp.data[month_ranges[year,month][0]:month_ranges[year,month][1]]
                        slp_month = slp_year.reshape(-1,24)
                                            
                    else:
                        winds_year = winds.data[month_ranges[year,month][0]:month_ranges[year,month][1]]                  
                        winds_year = winds_year.reshape(-1,24)
                        winds_month = np.ma.concatenate((winds_month, winds_year), axis = 0)
                        
                        slp_year = slp.data[month_ranges[year,month][0]:month_ranges[year,month][1]]                  
                        slp_year =  slp_year.reshape(-1,24)
                        slp_month = np.ma.concatenate((slp_month, slp_year), axis = 0)
                        
                median_wind = np.ma.median(winds_month)
                median_slp  = np.ma.median(slp_month)
                
                wind_MAD = utils.mean_absolute_deviation(winds_month.compressed())
                slp_MAD = utils.mean_absolute_deviation(slp_month.compressed())
                
                if diagnostics:
                    print "median windspeed {} m/s, MAD = {}".format(median_wind, wind_MAD)
                    print "median slp {} hPa, MAD = {}".format(median_slp, slp_MAD)

            # now test to see if variance exceeds expected range
            for y, year in enumerate(range(month_ranges.shape[0])):


                if (variances[y] != st_var.mdi) and (iqr_variance != st_var.mdi) and \
                    (median_variance != st_var.mdi) and (month_data_count[y,month] >= DATA_COUNT_THRESHOLD):
                    
                    # if SLP, then need to test if deep low pressure ("hurricane/storm") present
                    #   as this will increase the variance for this month + year
                    if variable in ["slp", "windspeeds"]:
                        
                        iqr_threshold = 6.
                        
                        # increase threshold if reporting frequency and resolution of this
                        #   year doesn't match average
                        if (rep_accuracies[y] != reporting_resolution) and \
                            (rep_freqs[y] != reporting_freq):
                            iqr_threshold = 8.
                       
                        if diagnostics:
                            print np.abs(variances[y] - median_variance) / iqr_variance, variances[y] , median_variance , iqr_variance , iqr_threshold, month+1, year+start.year
                        
                        if np.abs((variances[y] - median_variance) / iqr_variance) > iqr_threshold:
                        
                            # check for storms     
                            winds_month = winds.data[month_ranges[year,month][0]:month_ranges[year,month][1]]                  
                            slp_month = slp.data[month_ranges[year,month][0]:month_ranges[year,month][1]]                  
                   
                            storm = False
                            if (len(winds_month.compressed()) >= 1) and (len(slp_month.compressed()) >= 1):
                                # find max wind & min SLP
                                # max_wind_loc = np.where(winds_month == np.max(winds_month))[0][0]
                                # min_slp_loc = np.where(slp_month == np.min(slp_month))[0][0]

                                # if these are above thresholds and within one day of each other,
                                #    then it likely was a storm
                                # print "fix this in case of multiple max/min locations"
                                # if (np.abs(max_wind_loc - min_slp_loc) <= 24) and \ 
                                #     (((np.max(winds_month) - median_wind) / wind_MAD) > MAD_THRESHOLD) and \
                                #     (((median_slp - np.min(slp_month)) / slp_MAD) > MAD_THRESHOLD): 

                                # locations where winds greater than threshold
                                high_winds, = np.where((winds_month - median_wind)/wind_MAD > MAD_THRESHOLD)
                                # and where SLP less than threshold
                                low_slps, = np.where((median_slp - slp_month)/slp_MAD > MAD_THRESHOLD)

                                # if any locations match, then it's a storm
                                match_loc = high_winds[np.in1d(high_winds, low_slps)]
                                    
                                if len(match_loc) > 0:
                                    storm = True
                            else:
                                print "write spurious"
                                
                            # check the SLP first difference series
                            #   to ensure a drop down and climb out of minimum SLP/or climb up and down from maximum wind speed
                            if variable == "slp":
                                diffs = np.diff(slp_month.compressed())
                            elif variable == "windspeeds":
                                diffs = np.diff(winds_month.compressed())
                            
                            negs, poss = 0,0
                            biggest_neg, biggest_pos = 0,0
                            
                            for diff in diffs:
                                
                                if diff > 0:
                                    if negs > biggest_neg: biggest_neg = negs
                                    negs = 0
                                    poss += 1
                                else:
                                    if poss > biggest_pos: biggest_pos = poss
                                    poss = 0
                                    negs += 1
                                
                            if (biggest_neg < 10) and (biggest_pos < 10) and not storm:
                                
                                # not a hurricane, so mask
                                station.qc_flags[month_ranges[year,month,0]:month_ranges[year,month,1], flag_col[v]] = 1
                                if plots or diagnostics:
                                    print "No Storm or Hurricane in %i %i - flagging\n" % (month+1, y+start.year)
                                else:
                                    logfile.write("No Storm or Hurricane in %i %i - flagging\n" % (month+1, y+start.year))
                                
                            else:
                                # hurricane
                                if plots or diagnostics:
                                    print "Storm or Hurricane in %i %i - not flagging\n" % (month+1, y+start.year)
                                else:
                                    logfile.write("Storm or Hurricane in %i %i - not flagging\n" % (month+1, y+start.year))
                        
                            if plots:
                                # plot showing the pressure, pressure first differences and the wind speeds
                                plot_times = utils.times_hours_to_datetime(station.time.data[month_ranges[year,month][0]:month_ranges[year,month][1]], start)

                                evc_plot_slp_wind(plot_times, slp_month, diffs, median_slp, slp_MAD, winds_month, median_wind, wind_MAD)

                    else:
                        
                        iqr_threshold = 8.
                        
                        if (rep_accuracies[y] != reporting_resolution) and \
                            (rep_freqs[y] != reporting_freq):
                            iqr_threshold = 10.
                            

                        if np.abs(variances[y] - median_variance) / iqr_variance > iqr_threshold:
                                
                            if diagnostics:
                                print "flagging {} {}".format(year+start.year,calendar.month_name[month+1])
                            # remove the data 
                            station.qc_flags[month_ranges[year,month,0]:month_ranges[year,month,1], flag_col[v]] = 1


            if plots:
                plot_variances = (variances - median_variance) / iqr_variance

                plot_variances = np.ma.masked_where(month_data_count[:,month] < DATA_COUNT_THRESHOLD,plot_variances)
                
                evc_plot_hist(plot_variances, iqr_threshold, "Variance Check - %s - %s" % (variable, calendar.month_name[month+1]))
 
        flag_locs = np.where(station.qc_flags[:, flag_col[v]] != 0)
        if plots or diagnostics:
            utils.print_flagged_obs_number(logfile, "Variance", variable, len(flag_locs[0]), noWrite = True)
        else:
            utils.print_flagged_obs_number(logfile, "Variance", variable, len(flag_locs[0]))
            
        # copy flags into attribute
        st_var.flags[flag_locs] = 1

    # matches 030660 for T, D and SLP 21/8/2014

    station = utils.append_history(station, "Excess Variance Check")

    return # evc
Beispiel #7
0
def neighbour_checks(station_info, restart_id = "", end_id = "", distances=np.array([]), angles=np.array([]), second = False, masking = False, doZip=False, plots = False, diagnostics = False):
    """
    Run through neighbour checks on list of stations passed
    
    :param list station_info: list of lists - [[ID, lat, lon, elev]] - strings
    :param array distances: array of distances between station pairs
    :param array angles: array of angles between station pairs
    :param bool second: do the second run
    :param bool masking: apply the flags to the data to mask the observations.

    """
    first = not second

    qc_code_version = subprocess.check_output(['svnversion']).strip()

    # if distances and angles not calculated, then do so
    if (len(distances) == 0) or (len(angles) == 0):
        print "calculating distances and bearings matrix"
        distances, angles = get_distances_angles(station_info)

    # extract before truncate the array
    neighbour_elevations = np.array(station_info[:,3], dtype=float) 
    neighbour_ids        = np.array(station_info[:,0])
    neighbour_info       = np.array(station_info[:,:])

    # sort truncated run
    startindex = 0
    if restart_id != "":
        startindex, = np.where(station_info[:,0] == restart_id)


    if end_id != "":
        endindex, = np.where(station_info[:,0] == end_id)
        if endindex != len(station_info) -1:
            station_info = station_info[startindex: endindex+1]
            distances = distances[startindex:endindex+1,:]
            angles = angles[startindex:endindex+1,:]
        else:
            station_info = station_info[startindex:]
            distances = distances[startindex:,:]
            angles = angles[startindex:,:]
    else:
        station_info = station_info[startindex:]
        distances = distances[startindex:,:]
        angles = angles[startindex:,:]
        

    # process each neighbour
    for st, stat in enumerate(station_info):       

        print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S")
        print "Neighbour Check"
        print "{:35s} {}".format("Station Identifier :", stat[0])

        if not plots and not diagnostics:
            logfile = file(LOG_OUTFILE_LOCS+stat[0]+'.log','a') # append to file if second iteration.
            logfile.write(dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n"))
            logfile.write("Neighbour Check\n")
            logfile.write("{:35s} {}\n".format("Station Identifier :", stat[0]))
        else:
            logfile = ""

        process_start_time = time.time()

        station = utils.Station(stat[0], float(stat[1]), float(stat[2]), float(stat[3]))

        # if running through the first time
        if first:

            if os.path.exists(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc.gz")):
                # if gzip file, unzip here
                subprocess.call(["gunzip",os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc.gz")])
                time.sleep(5) # make sure it is unzipped before proceeding

            # read in the data
            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal.nc"), station, process_vars, carry_thru_vars, diagnostics = diagnostics)

            if plots or diagnostics:
                print "{:35s}  {}\n".format("Total station record size :",len(station.time.data))
            else:
                logfile.write("{:35s}  {}\n".format("Total station record size :",len(station.time.data)))

            match_to_compress = utils.create_fulltimes(station, process_vars, DATASTART, DATAEND, carry_thru_vars)

        # or if second pass through?
        elif second:
            if os.path.exists(os.path.join(NETCDF_DATA_LOCS, station.id + "internal2.nc.gz")):
                # if gzip file, unzip here
                subprocess.call(["gunzip",os.path.join(NETCDF_DATA_LOCS, station.id + "_internal2.nc.gz")])
                time.sleep(5) # make sure it is unzipped before proceeding

            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, station.id + "_internal2.nc"), station, process_vars, carry_thru_vars, diagnostics = diagnostics)
            if plots or diagnostics:
                print "{:35s}  {}\n".format("Total station record size :",len(station.time.data))
            else:
                logfile.write("{:35s}  {}\n".format("Total station record size :",len(station.time.data)))

            match_to_compress = utils.create_fulltimes(station, process_vars, DATASTART, DATAEND, carry_thru_vars)


        # select neighbours
        neighbour_distances  = distances[st,:]
        neighbour_bearings   = angles[st,:]

        # have to add in start index so that can use location in distance file.
        # neighbours = n_utils.get_neighbours(st+startindex, np.float(stat[3]), neighbour_distances, neighbour_bearings, neighbour_elevations)

        # return all neighbours up to a limit from the distance and elevation offsets (500km and 300m respectively)
        neighbours, neighbour_quadrants = n_utils.get_all_neighbours(st+startindex, np.float(stat[3]), neighbour_distances, neighbour_bearings, neighbour_elevations)

        if plots or diagnostics:
            print "{:14s} {:10s} {:10s}".format("Neighbour","Distance","Elevation")
            for n in neighbours:
                print "{:14s} {:10.1f} {:10.1f}".format(neighbour_ids[n],neighbour_distances[n],neighbour_elevations[n])

        else:
            logfile.write("{:14s} {:10s} {:10s}\n".format("Neighbour","Distance","Elevation"))
            for n in neighbours:
                logfile.write("{:14s} {:10.1f} {:10.1f}\n".format(neighbour_ids[n],neighbour_distances[n],neighbour_elevations[n]))

        # if sufficient neighbours
        if len(neighbours) >= 3:

            for variable, col in FLAG_OUTLIER_DICT.items():
                # NOTE - this requires multiple reads of the same file
                #      but does make it easier to understand and code

                st_var = getattr(station, variable)

                if plots or diagnostics:
                    print "Length of {} record: {}".format(variable, len(st_var.data.compressed()))
                else:
                    logfile.write("Length of {} record: {}\n".format(variable, len(st_var.data.compressed())))

                
                if len(st_var.data.compressed()) > 0:

                    final_neighbours = n_utils.select_neighbours(station, variable, neighbour_info[neighbours], neighbours, neighbour_distances[neighbours], neighbour_quadrants, NETCDF_DATA_LOCS, DATASTART, DATAEND, logfile, second = second, diagnostics = diagnostics, plots = plots)


                    # now read in final set of neighbours and process

                    neigh_flags = np.zeros(len(station.time.data)) # count up how many neighbours think this obs is bad
                    neigh_count = np.zeros(len(station.time.data)) # number of neighbours at each time stamp
                    dpd_flags = np.zeros(len(station.time.data)) # number of neighbours at each time stamp
                    reporting_accuracies = np.zeros(len(neighbours)) # reporting accuracy of each neighbour

                    all_data = np.ma.zeros([len(final_neighbours), len(station.time.data)]) # store all the neighbour values

                    for nn, nn_loc in enumerate(final_neighbours):

                        neigh_details = neighbour_info[nn_loc]
                        neigh = utils.Station(neigh_details[0], float(neigh_details[1]), float(neigh_details[2]), float(neigh_details[3]))

                        if first:
                            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, neigh.id + "_internal.nc"), neigh, [variable], diagnostics = diagnostics, read_input_station_id = False)
                        elif second:
                            ncdfp.read(os.path.join(NETCDF_DATA_LOCS, neigh.id + "_internal2.nc"), neigh, [variable], diagnostics = diagnostics, read_input_station_id = False)

                        dummy = utils.create_fulltimes(neigh, [variable], DATASTART, DATAEND, [], do_input_station_id = False)

                        all_data[nn, :] = utils.apply_filter_flags(getattr(neigh, variable))

                        if diagnostics:
                            print neigh_details

                        n_utils.detect(station, neigh, variable, neigh_flags, neigh_count, DATASTART, DATAEND, distance = neighbour_distances[nn_loc], diagnostics = diagnostics, plots = plots)

                        reporting_accuracies[nn] = utils.reporting_accuracy(getattr(neigh,variable).data)

                        dpd_flags += neigh.qc_flags[:,31]
                    # gone through all neighbours


                    # if at least 2/3 of neighbours have flagged this point (and at least 3 neighbours)
                    some_flags, = np.where(neigh_flags > 0)            
                    outlier_locs, = np.where(np.logical_and((neigh_count[some_flags] >= 3),(neigh_flags[some_flags].astype("float")/neigh_count[some_flags] > 2./3.)))

                    # flag where < 3 neighbours
                    locs = np.where(neigh_count[some_flags] < 3)
                    station.qc_flags[some_flags[locs], col] = -1

                    if len(outlier_locs) >= 1:
                        station.qc_flags[some_flags[outlier_locs], col] = 1

                        # print number flagged and copy into attribute
                        if plots or diagnostics:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs), noWrite = True)
                        else:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs))
                        st_var = getattr(station, variable)
                        st_var.flags[some_flags[outlier_locs]] = 1

                    else:
                        if plots or diagnostics:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs), noWrite = True)
                        else:
                            utils.print_flagged_obs_number(logfile, "Neighbour", variable, len(outlier_locs))


                    if plots:
                        n_utils.plot_outlier(station, variable, some_flags[outlier_locs], all_data, DATASTART)

                    # unflagging using neighbours
                    n_utils.do_unflagging(station, variable, all_data, reporting_accuracies, neigh_count, dpd_flags, FLAG_COL_DICT, DATASTART, logfile, plots = plots, diagnostics = diagnostics)

                else:
                    if plots or diagnostics:
                        print "No observations to assess for {}".format(variable)
                    else:
                        logfile.write("No observations to assess for {}\n".format(variable))
                    

            # variable loop
        else:
            if plots or diagnostics:
                print "Fewer than 3 neighbours"
            else:
                logfile.write("Fewer than 3 neighbours\n")

        print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S")
        print "processing took {:4.0f}s\n\n".format(time.time() - process_start_time)

        # end of neighbour check
        utils.append_history(station, "Neighbour Outlier Check")
        
        # clean up months 

        qc_tests.clean_up.clu(station, ["temperatures","dewpoints","slp","windspeeds","winddirs"], [44,45,46,47,48], FLAG_COL_DICT, DATASTART, DATAEND, logfile, plots = plots, diagnostics = diagnostics)


        if diagnostics or plots: raw_input("stop")

        # masking (at least call from here - optional call from internal?)

        # write to file
        if first:
            ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_external.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            # gzip the raw file
        elif second:
            ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_external2.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            # gzip the raw file
 

        # masking - apply the flags and copy masked data to flagged_obs attribute
        if masking:

            station = utils.mask(station, process_vars, logfile, FLAG_COL_DICT)

            # write to file
            if first:
                ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_mask.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)
            elif second:
                ncdfp.write(os.path.join(NETCDF_DATA_LOCS, station.id + "_mask2.nc"), station, process_vars, os.path.join(INPUT_FILE_LOCS,'attributes.dat'), opt_var_list = carry_thru_vars, compressed = match_to_compress, processing_date = '', qc_code_version = qc_code_version)

        if plots or diagnostics:
            print "Masking completed\n"
            print dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n")
            print "processing took {:4.0f}s\n\n".format(time.time() - process_start_time)
        else:
            logfile.write("Masking completed\n")
            logfile.write(dt.datetime.strftime(dt.datetime.now(), "%A, %d %B %Y, %H:%M:%S\n"))
            logfile.write("processing took {:4.0f}s\n\n".format(time.time() - process_start_time))
            logfile.close()
            
    # looped through all stations

    # gzip up all the raw files
    if doZip:
        for st, stat in enumerate(station_info):       
            if first:
                subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_internal.nc")])
                if masking:
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_external.nc")])
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_mask.nc")])

            elif second:
                subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_internal2.nc")])
                if masking:
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_external2.nc")])
                    subprocess.call(["gzip",os.path.join(NETCDF_DATA_LOCS, stat[0]+"_mask2.nc")])

    print "Neighbour Checks completed\n"

    return # neighbour_checks 
Beispiel #8
0
def identify_values(obs_var,
                    station,
                    config_file,
                    plots=False,
                    diagnostics=False):
    """
    Use distribution to identify frequent values.  Then also store in config file.

    :param MetVar obs_var: meteorological variable object
    :param Station station: station object
    :param str config_file: configuration file to store critical values
    :param bool plots: turn on plots
    :param bool diagnostics: turn on diagnostic output
    """

    # TODO - do we want to go down the road of allowing resolution (and hence test)
    #           to vary over the p-o-r?  I.e. 1C in early, to 0.5C to 0.1C in different decades?

    utils.write_qc_config(config_file,
                          "FREQUENT-{}".format(obs_var.name),
                          "width",
                          "{}".format(BIN_WIDTH),
                          diagnostics=diagnostics)

    for month in range(1, 13):

        locs, = np.where(station.months == month)

        month_data = obs_var.data[locs]

        if len(month_data.compressed()) < utils.DATA_COUNT_THRESHOLD:
            # insufficient data, so write out empty config and move on
            utils.write_qc_config(config_file,
                                  "FREQUENT-{}".format(obs_var.name),
                                  "{}".format(month),
                                  "[{}]".format(",".join(str(s) for s in [])),
                                  diagnostics=diagnostics)
            continue

        # adjust bin widths according to reporting accuracy
        resolution = utils.reporting_accuracy(month_data)

        if resolution <= 0.5:
            bins = utils.create_bins(month_data, 0.5, obs_var.name)
        else:
            bins = utils.create_bins(month_data, 1.0, obs_var.name)

        hist, bin_edges = np.histogram(month_data, bins)

        # diagnostic plots
        if plots:
            import matplotlib.pyplot as plt

            plt.step(bins[1:], hist, color='k', where="pre")
            plt.yscale("log")

            plt.ylabel("Number of Observations")
            plt.xlabel(obs_var.name.capitalize())
            plt.title("{} - month {}".format(station.id, month))

        # Scan through the histogram
        #   check if a bin is the maximum of a local area ("ROLLING")
        suspect = []
        for b, bar in enumerate(hist):
            if (b > ROLLING // 2) and (b <= (len(hist) - ROLLING // 2)):

                target_bins = hist[b - (ROLLING // 2):b + (ROLLING // 2) + 1]

                # if sufficient obs, maximum and contains > 50%, but not all, of the data
                if bar >= utils.DATA_COUNT_THRESHOLD:
                    if bar == target_bins.max():
                        if (bar / target_bins.sum()) > RATIO:
                            suspect += [bins[b]]

        # diagnostic plots
        if plots:
            bad_hist = np.copy(hist)
            for b, bar in enumerate(bad_hist):
                if bins[b] not in suspect:
                    bad_hist[b] = 0

            plt.step(bins[1:], bad_hist, color='r', where="pre")
            plt.show()

        # write out the thresholds...
        utils.write_qc_config(config_file,
                              "FREQUENT-{}".format(obs_var.name),
                              "{}".format(month),
                              "[{}]".format(",".join(str(s) for s in suspect)),
                              diagnostics=diagnostics)

    return  # identify_values
Beispiel #9
0
def frequent_values(obs_var,
                    station,
                    config_file,
                    plots=False,
                    diagnostics=False):
    """
    Use config file to read frequent values.  Check each month to see if appear.

    :param MetVar obs_var: meteorological variable object
    :param Station station: station object
    :param str config_file: configuration file to store critical values
    :param bool plots: turn on plots
    :param bool diagnostics: turn on diagnostic output
    """

    flags = np.array(["" for i in range(obs_var.data.shape[0])])

    all_years = np.unique(station.years)

    # work through each month, and then year
    for month in range(1, 13):

        # read in bin-width and suspect bins for this month
        try:
            width = float(
                utils.read_qc_config(config_file,
                                     "FREQUENT-{}".format(obs_var.name),
                                     "width"))
            suspect_bins = utils.read_qc_config(config_file,
                                                "FREQUENT-{}".format(
                                                    obs_var.name),
                                                "{}".format(month),
                                                islist=True)
        except KeyError:
            print("Information missing in config file")
            identify_values(obs_var,
                            station,
                            config_file,
                            plots=plots,
                            diagnostics=diagnostics)
            width = float(
                utils.read_qc_config(config_file,
                                     "FREQUENT-{}".format(obs_var.name),
                                     "width"))
            suspect_bins = utils.read_qc_config(config_file,
                                                "FREQUENT-{}".format(
                                                    obs_var.name),
                                                "{}".format(month),
                                                islist=True)

        # skip on if nothing to find
        if len(suspect_bins) == 0:
            continue

        # work through each year
        for year in all_years:
            locs, = np.where(
                np.logical_and(station.months == month, station.years == year))

            month_data = obs_var.data[locs]

            # skip if no data
            if np.ma.count(month_data) == 0:
                continue

            month_flags = np.array(["" for i in range(month_data.shape[0])])

            # adjust bin widths according to reporting accuracy
            resolution = utils.reporting_accuracy(month_data)

            if resolution <= 0.5:
                bins = utils.create_bins(month_data, 0.5, obs_var.name)
            else:
                bins = utils.create_bins(month_data, 1.0, obs_var.name)
            hist, bin_edges = np.histogram(month_data, bins)

            # Scan through the histogram
            #   check if a bin is the maximum of a local area ("ROLLING")
            for b, bar in enumerate(hist):
                if (b > ROLLING // 2) and (b <= (len(hist) - ROLLING // 2)):

                    target_bins = hist[b - (ROLLING // 2):b + (ROLLING // 2) +
                                       1]

                    # if sufficient obs, maximum and contains > 50% of data
                    if bar >= utils.DATA_COUNT_THRESHOLD:
                        if bar == target_bins.max():
                            if (bar / target_bins.sum()) > RATIO:
                                # this bin meets all the criteria
                                if bins[b] in suspect_bins:
                                    # find observations (month & year) to flag!
                                    flag_locs = np.where(
                                        np.logical_and(
                                            month_data >= bins[b],
                                            month_data < bins[b + 1]))
                                    month_flags[flag_locs] = "F"

            # copy flags for all years into main array
            flags[locs] = month_flags

        # diagnostic plots
        if plots:
            import matplotlib.pyplot as plt

            plt.step(bins[1:], hist, color='k', where="pre")
            plt.yscale("log")

            plt.ylabel("Number of Observations")
            plt.xlabel(obs_var.name.capitalize())
            plt.title("{} - month {}".format(station.id, month))

            bad_hist = np.copy(hist)
            for b, bar in enumerate(bad_hist):
                if bins[b] not in suspect_bins:
                    bad_hist[b] = 0

            plt.step(bins[1:], bad_hist, color='r', where="pre")
            plt.show()

    # append flags to object
    obs_var.flags = utils.insert_flags(obs_var.flags, flags)

    if diagnostics:

        print("Frequent Values {}".format(obs_var.name))
        print("   Cumulative number of flags set: {}".format(
            len(np.where(flags != "")[0])))

    return  # frequent_values
Beispiel #10
0
def sc(station, variable_list, flag_col, start, end, logfile, diagnostics = False, plots = False, second = False):
    '''
    Spike Check, looks for spikes up to 3 observations long, using thresholds
    calculated from the data itself.

    :param MetVar station: the station object
    :param list variable_list: list of observational variables to process
    :param list flag_col: the columns to set on the QC flag array
    :param datetime start: dataset start time
    :param datetime end: dataset end time
    :param file logfile: logfile to store outputs
    :param bool plots: do plots
    :param bool second: run for second time

    :returns:    
    '''
    print "refactor"
    
    for v, variable in enumerate(variable_list):

        flags = station.qc_flags[:, flag_col[v]]

        prev_flag_number = 0
        if second:
            # count currently existing flags:
            prev_flag_number = len(flags[flags != 0])
    
        st_var = getattr(station, variable)
    
        all_filtered = utils.apply_filter_flags(st_var)
      
        reporting_resolution = utils.reporting_accuracy(utils.apply_filter_flags(st_var))
        # to match IDL system - should never be called as would mean no data
        if reporting_resolution == -1: reporting_resolution = 1 

        month_ranges = utils.month_starts_in_pairs(start, end)
        month_ranges = month_ranges.reshape(-1,12,2)
        
        good = np.where(all_filtered.mask == False)
        
        full_time_diffs = np.ma.zeros(len(all_filtered))
        full_time_diffs.mask = all_filtered.mask
        full_time_diffs[good] = station.time.data[good][1:] - station.time.data[good][:-1]
        
        # develop critical values using clean values
        # NOTE 4/7/14 - make sure that Missing and Flagged values treated appropriately
        print "sort the differencing if values were flagged rather than missing"

        full_filtered_diffs = np.ma.zeros(len(all_filtered))
        full_filtered_diffs.mask = all_filtered.mask
        full_filtered_diffs[good] = all_filtered.compressed()[1:] - all_filtered.compressed()[:-1]
        
        # test all values
        good_to_uncompress = np.where(st_var.data.mask == False)
        full_value_diffs = np.ma.zeros(len(st_var.data))
        full_value_diffs.mask = st_var.data.mask
        full_value_diffs[good_to_uncompress] = st_var.data.compressed()[1:] - st_var.data.compressed()[:-1]

        # convert to compressed time to match IDL
        value_diffs = full_value_diffs.compressed()
        time_diffs = full_time_diffs.compressed()
        filtered_diffs = full_filtered_diffs.compressed()
        flags = flags[good_to_uncompress]
        

        critical_values = np.zeros([9,12])
        critical_values.fill(st_var.mdi)
        
        # link observation to calendar month
        month_locs = np.zeros(full_time_diffs.shape)
                
        for month in range(12):
            for year in range(month_ranges.shape[0]):
                
                if year == 0:
                    this_month_time_diff = full_time_diffs[month_ranges[year,month,0]:month_ranges[year,month,1]]
                    this_month_filtered_diff = full_filtered_diffs[month_ranges[year,month,0]:month_ranges[year,month,1]]
                else:
                    this_month_time_diff = np.ma.concatenate([this_month_time_diff, full_time_diffs[month_ranges[year,month,0]:month_ranges[year,month,1]]])
                    this_month_filtered_diff = np.ma.concatenate([this_month_filtered_diff, full_filtered_diffs[month_ranges[year,month,0]:month_ranges[year,month,1]]])


                month_locs[month_ranges[year,month,0]:month_ranges[year,month,1]] = month
      
            for delta in range(1,9):
                
                locs = np.ma.where(this_month_time_diff == delta)
        
                if len(locs[0]) >= 100:
                    
                    iqr = utils.IQR(this_month_filtered_diff[locs])

                    if iqr == 0. and delta == 1:
                        critical_values[delta-1,month] = 6.
                    elif iqr == 0: 
                        critical_values[delta-1,month] = st_var.mdi
                    else:
                        critical_values[delta-1,month] = 6. * iqr      

                    # January 2015 - changed to dynamically calculating the thresholds if less than IQR method ^RJHD

                    if plots:
                        import calendar
                        title = "{}, {}-hr differences".format(calendar.month_name[month+1], delta)                  
                        line_label = st_var.name
                        xlabel = "First Difference Magnitudes"
                    else:
                        title, line_label, xlabel = "","",""

                    threshold = utils.get_critical_values(this_month_filtered_diff[locs], binmin = 0, binwidth = 0.5, plots = plots, diagnostics = diagnostics, title = title, line_label = line_label, xlabel = xlabel, old_threshold = critical_values[delta-1,month])

                    if threshold < critical_values[delta-1,month]: critical_values[delta-1,month] = threshold

                    if plots or diagnostics:

                        print critical_values[delta-1,month] , iqr, 6 * iqr
           

        month_locs = month_locs[good_to_uncompress]
        if diagnostics:
            print critical_values[0,:]
                
        # not less than 5x reporting accuracy
        good_critical_values = np.where(critical_values != st_var.mdi)
        low_critical_values = np.where(critical_values[good_critical_values] <= 5.*reporting_resolution)
        temporary = critical_values[good_critical_values]
        temporary[low_critical_values] = 5.*reporting_resolution
        critical_values[good_critical_values] = temporary
        
        
        if diagnostics:
            print critical_values[0,:], 5.*reporting_resolution

        # check hourly against 2 hourly, if <2/3 the increase to avoid crazy rejection rate
        for month in range(12):
            if critical_values[0,month] != st_var.mdi and critical_values[1,month] != st_var.mdi:
                if critical_values[0,month]/critical_values[1,month] <= 0.66:
                    critical_values[0,month] = 0.66 * critical_values[1,month]
        
        if diagnostics:
            print critical_values[0,:]


        # get time differences for unfiltered data

        full_time_diffs = np.ma.zeros(len(st_var.data))
        full_time_diffs.mask = st_var.data.mask
        full_time_diffs[good_to_uncompress] = station.time.data[good_to_uncompress][1:] - station.time.data[good_to_uncompress][:-1]
        time_diffs = full_time_diffs.compressed()

        # go through each difference, identify which month it is in if passes spike thresholds 
    
        # spikes at the beginning or ends of sections
        for t in np.arange(len(time_diffs)):
            if (np.abs(time_diffs[t - 1]) > 240) and (np.abs(time_diffs[t]) < 3):
                # 10 days before but short gap thereafter
                
                next_values = st_var.data[good_to_uncompress[0][t + 1:]] 
                good, = np.where(next_values.mask == False)
        
                next_median = np.ma.median(next_values[good[:10]])
        
                next_diff = np.abs(value_diffs[t]) # out of spike
                median_diff = np.abs(next_median - st_var.data[good_to_uncompress[0][t]]) # are the remaining onees
                       
                if (critical_values[time_diffs[t] - 1, month_locs[t]] != st_var.mdi):
                    
                    # jump from spike > critical but average after < critical / 2
                    if (np.abs(median_diff) < critical_values[time_diffs[t] - 1, month_locs[t]] / 2.) and\
                        (np.abs(next_diff) > critical_values[time_diffs[t] - 1, month_locs[t]]) :
                    
                        flags[t] = 1
                        if plots or diagnostics:
                            sc_diagnostics_and_plots(station.time.data, st_var.data, good_to_uncompress[0][t], good_to_uncompress[0][t+1], start, variable, plots = plots)
                        
                        
            elif (np.abs(time_diffs[t - 1]) < 3) and (np.abs(time_diffs[t]) > 240):
                # 10 days after but short gap before
                
                prev_values = st_var.data[good_to_uncompress[0][:t - 1]]
                good, = np.where(prev_values.mask == False)
        
                prev_median = np.ma.median(prev_values[good[-10:]])
        
                prev_diff = np.abs(value_diffs[t - 1])
                median_diff = np.abs(prev_median - st_var.data[good_to_uncompress[0][t]])
        
                if (critical_values[time_diffs[t - 1] - 1, month_locs[t]] != st_var.mdi):
                    
                    # jump into spike > critical but average before < critical / 2
                    if (np.abs(median_diff) < critical_values[time_diffs[t - 1] - 1, month_locs[t]] / 2.) and\
                        (np.abs(prev_diff) > critical_values[time_diffs[t - 1] - 1, month_locs[t]]) :
                    
                        flags[t] = 1
                        if plots or diagnostics:
                            sc_diagnostics_and_plots(station.time.data, st_var.data, good_to_uncompress[0][t], good_to_uncompress[0][t+1], start, variable, plots = plots)
                        
        
        
        
        ''' this isn't the nicest way, but a direct copy from IDL
            masked arrays might help remove some of the lines

            Also, this is relatively slow'''
            
        for t in np.arange(len(time_diffs)):
            for spk_len in [1,2,3]:
                if t >= spk_len and t < len(time_diffs) - spk_len:
                    
                    # check if time differences are appropriate, for multi-point spikes
                    if (np.abs(time_diffs[t - spk_len]) <= spk_len * 3) and\
                    (np.abs(time_diffs[t]) <= spk_len * 3) and\
                    (time_diffs[t - spk_len - 1] - 1 < spk_len * 3) and\
                    (time_diffs[t + 1] - 1 < spk_len * 3) and \
                    ((spk_len == 1) or \
                    ((spk_len == 2) and (np.abs(time_diffs[t - spk_len + 1]) <= spk_len * 3)) or \
                    ((spk_len == 3) and (np.abs(time_diffs[t - spk_len + 1]) <= spk_len * 3) and (np.abs(time_diffs[t - spk_len + 2]) <= spk_len * 3))):
                        
                        # check if differences are valid                        
                        if (value_diffs[t - spk_len] != st_var.mdi) and \
                        (value_diffs[t - spk_len] != st_var.fdi) and \
                        (critical_values[time_diffs[t - spk_len] - 1, month_locs[t]] != st_var.mdi):
                        
                            # if exceed critical values
                            if (np.abs(value_diffs[t - spk_len]) >= critical_values[time_diffs[t - spk_len] - 1, month_locs[t]]):

                                # are signs of two differences different
                                if (math.copysign(1, value_diffs[t]) != math.copysign(1, value_diffs[t - spk_len])):
                                    
                                    # are within spike differences small
                                    if (spk_len == 1) or\
                                    ((spk_len == 2) and (np.abs(value_diffs[t - spk_len + 1]) < critical_values[time_diffs[t - spk_len + 1] -1, month_locs[t]] / 2.)) or \
                                    ((spk_len == 3) and (np.abs(value_diffs[t - spk_len + 1]) < critical_values[time_diffs[t - spk_len + 1] -1, month_locs[t]] / 2.) and\
                                      (np.abs(value_diffs[t - spk_len + 2]) < critical_values[time_diffs[t - spk_len + 2] -1, month_locs[t]] / 2.)):
                                    
                                        # check if following value is valid
                                        if (value_diffs[t] != st_var.mdi) and (critical_values[time_diffs[t] - 1, month_locs[t]] != st_var.mdi) and\
                                            (value_diffs[t] != st_var.fdi):
                                            
                                            # and if at least critical value                                            
                                            if (np.abs(value_diffs[t]) >= critical_values[time_diffs[t] - 1, month_locs[t]]):
                                                
                                                # test if surrounding differences below 1/2 critical value
                                                if (np.abs(value_diffs[t - spk_len - 1]) <= critical_values[time_diffs[t - spk_len - 1] - 1, month_locs[t]] / 2.): 
                                                    if (np.abs(value_diffs[t + 1]) <= critical_values[time_diffs[t + 1] - 1, month_locs[t]] / 2.): 
                                                    
                                                        # set the flags
                                                        flags[ t - spk_len + 1 : t +1] = 1   

                                                        if plots or diagnostics:
                                                            
                                                            sc_diagnostics_and_plots(station.time.data, st_var.data, good_to_uncompress[0][t-spk_len+1], good_to_uncompress[0][t+1], start, variable, plots = plots)
                                                           

        station.qc_flags[good_to_uncompress, flag_col[v]] = flags
                                    
        flag_locs = np.where(station.qc_flags[:, flag_col[v]] != 0)

        if plots or diagnostics:
            utils.print_flagged_obs_number(logfile, "Spike", variable, len(flag_locs[0]) - prev_flag_number, noWrite = True) # additional flags
        else:
            utils.print_flagged_obs_number(logfile, "Spike", variable, len(flag_locs[0]) - prev_flag_number) # additional flags

        # copy flags into attribute
        st_var.flags[flag_locs] = 1
 
        # matches 030660 - but with adapted IDL
        # matches 030220 OK, but finds more but all are reasonable 1/9/14

        do_interactive = False
        if plots and do_interactive == True:
            import matplotlib.pyplot as plt
        
            plot_times = utils.times_hours_to_datetime(station.time.data, start)
            
            plt.clf()
            plt.plot(plot_times, all_filtered, 'bo', ls='-')
            flg = np.where(flags[:, flag_col[v]] == 1)
            plt.plot(plot_times[flg], all_filtered[flg], 'ro', markersize=10)
            plt.show()
	    
    station = utils.append_history(station, "Spike Check")  

    return # sc
Beispiel #11
0
def fvc(station, variable_list, flag_col, start, end, logfile, diagnostics = False, plots = False):
    '''
    Check for certain values occurring more frequently than would be expected
    
    :param object station: station object to process
    :param list variable_list: list of variables to process
    :param list flag_col: columns to fill in flag array
    :param datetime start: datetime object of start of data
    :param datetime end: datetime object of end of data
    :param file logfile: logfile to store outputs
    :param bool diagnostics: produce extra diagnostic output
    :param bool plots: produce plots
    '''
    
    MIN_DATA_REQUIRED = 500 # to create histogram for complete record
    MIN_DATA_REQUIRED_YEAR = 100 # to create histogram

    month_ranges = utils.month_starts_in_pairs(start, end)

    month_ranges_years = month_ranges.reshape(-1,12,2)

    for v,variable in enumerate(variable_list):
    
        st_var = getattr(station, variable)
        
        reporting_accuracy = utils.reporting_accuracy(utils.apply_filter_flags(st_var))
        
        # apply flags - for detection only
        filtered_data = utils.apply_filter_flags(st_var)

        for season in range(5): # Year,MAM,JJA,SON,JF+D
 
            if season == 0:
                # all year
                season_data = np.ma.masked_values(filtered_data.compressed(), st_var.fdi)
                thresholds = [30,20,10]

            else:
                thresholds = [20,15,10]
                season_data = np.ma.array([])
                
                for y,year in enumerate(month_ranges_years):
                    # churn through months extracting data, accounting for fdi and concatenating together
                    if season == 1:
                        #mam
                        season_data = np.ma.concatenate([season_data, np.ma.masked_values(filtered_data[year[2][0]:year[4][-1]], st_var.fdi)])
                    elif season == 2:
                        #jja
                        season_data = np.ma.concatenate([season_data, np.ma.masked_values(filtered_data[year[5][0]:year[7][-1]], st_var.fdi)])
                    elif season == 3:
                        #son
                        season_data = np.ma.concatenate([season_data, np.ma.masked_values(filtered_data[year[8][0]:year[10][-1]], st_var.fdi)])
                    elif season == 4:
                        #d+jf
                        season_data = np.ma.concatenate([season_data, np.ma.masked_values(filtered_data[year[0][0]:year[1][-1]], st_var.fdi)])
                        season_data = np.ma.concatenate([season_data, np.ma.masked_values(filtered_data[year[-1][0]:year[-1][-1]], st_var.fdi)])
                    

            season_data = season_data.compressed()

            if len(season_data) > MIN_DATA_REQUIRED:    

                if 0 < reporting_accuracy <= 0.5: # -1 used as missing value
                    bins, bincenters = utils.create_bins(season_data, 0.5)
                else:
                    bins, bincenters = utils.create_bins(season_data, 1.0)

                hist, binEdges = np.histogram(season_data, bins = bins)
            
                if plots:
                    plot_hist, bincenters = fvc_plot_setup(season_data, hist, binEdges, st_var.name, title = "%s" % (SEASONS[season]))

                bad_bin = np.zeros(len(hist))

                # scan through bin values and identify bad ones
                for e, element in enumerate(hist):                  
                    if e > 3 and e <= (len(hist) - 3):
                        # don't bother with first three or last three bins
                        seven_bins = hist[e-3:e+3+1]
                        if (seven_bins[3] == seven_bins.max()) and (seven_bins[3] != 0):
                            # is local maximum and != zero
                            if (seven_bins[3]/float(seven_bins.sum()) >= 0.5) and (seven_bins[3] >= thresholds[0]):
                                # contains >50% of data and is greater than threshold
                                bad_bin[e] = 1

                            # for plotting remove good bins
                            else:
                                if plots: plot_hist[e]=1e-1
                        else:
                            if plots: plot_hist[e]=1e-1
                    else:
                        if plots: plot_hist[e]=1e-1



                if plots:
                    plt.step(bincenters, plot_hist, 'r-', where='mid')
                    plt.show()
            
                # having identified possible bad bins, check each year in turn
                for y,year in enumerate(month_ranges_years):

                    if season == 0:
                        # year
                        year_data = np.ma.masked_values(st_var.data[year[0][0]:year[-1][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[0][0]:year[-1][-1],flag_col[v]]
                    elif season == 1:
                        #mam
                        year_data = np.ma.masked_values(st_var.data[year[2][0]:year[4][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[2][0]:year[4][-1],flag_col[v]]
                    elif season == 2:
                        #jja
                        year_data = np.ma.masked_values(st_var.data[year[5][0]:year[7][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[5][0]:year[7][-1],flag_col[v]]
                    elif season == 3:
                        #son
                        year_data = np.ma.masked_values(st_var.data[year[8][0]:year[10][-1]], st_var.fdi)
                        year_flags = station.qc_flags[year[8][0]:year[10][-1],flag_col[v]]
                    elif season == 4:
                        #d+jf
                        year_data = np.ma.concatenate([np.ma.masked_values(st_var.data[year[0][0]:year[1][-1]], st_var.fdi),\
                                                       np.ma.masked_values(st_var.data[year[-1][0]:year[-1][-1]], st_var.fdi)])
                        year_flags = np.append(station.qc_flags[year[0][0]:year[1][-1],flag_col[v]],station.qc_flags[year[-1][0]:year[-1][-1],flag_col[v]])


                    if len(year_data.compressed()) > MIN_DATA_REQUIRED_YEAR:    

                        hist, binEdges = np.histogram(year_data.compressed(), bins = bins)

                        if plots:
                            plot_hist, bincenters = fvc_plot_setup(hist, binEdges, st_var.name, title = "%s - %s" % (y+start.year, SEASONS[season]))

                        for e, element in enumerate(hist):

                            if bad_bin[e] == 1:
                                # only look at pre-identified bins

                                if e >= 3 and e <= (len(hist) - 3):
                                    # don't bother with first three or last three bins
                                    seven_bins = hist[e-3:e+3+1].astype('float')
                                    if (seven_bins[3] == seven_bins.max()) and (seven_bins[3] != 0):
                                        # is local maximum and != zero
                                        if (seven_bins[3]/seven_bins.sum() >= 0.5 and seven_bins[3] >= thresholds[1]) \
                                            or (seven_bins[3]/seven_bins.sum() >= 0.9 and seven_bins[3] >= thresholds[2]):
                                            # contains >50% or >90% of data and is greater than appropriate threshold

                                            # Flag these data
                                            bad_points = np.where((year_data >= binEdges[e]) & (year_data < binEdges[e+1]))
                                            year_flags[bad_points] = 1

                                        # for plotting remove good bins
                                        else:
                                            if plots: plot_hist[e]=1e-1
                                    else:
                                        if plots: plot_hist[e]=1e-1
                                else:
                                    if plots: plot_hist[e]=1e-1
                            else:
                                if plots: plot_hist[e]=1e-1

                        if diagnostics or plots:
                            nflags = len(np.where(year_flags != 0)[0])
                            print "{} {}".format(y + start.year, nflags)

                        if plots:
                            if nflags > 0:
                                plt.step(bincenters, plot_hist, 'r-', where='mid')
                                plt.show()
                            else:
                                plt.clf()

                    # copy flags back

                    if season == 0:
                        station.qc_flags[year[0][0]:year[-1][-1], flag_col[v]] = year_flags   
                    elif season == 1:
                        station.qc_flags[year[2][0]:year[4][-1], flag_col[v]] = year_flags   
                    elif season == 2:
                        station.qc_flags[year[5][0]:year[7][-1], flag_col[v]] = year_flags   
                    elif season == 3:
                        station.qc_flags[year[8][0]:year[10][-1], flag_col[v]] = year_flags   
                    elif season == 4:
                        split = len(station.qc_flags[year[0][0]:year[1][-1], flag_col[v]])
                        station.qc_flags[year[0][0]:year[1][-1], flag_col[v]] = year_flags[:split]
                        station.qc_flags[year[-1][0]:year[-1][-1], flag_col[v]] = year_flags[split:]
 
        flag_locs = np.where(station.qc_flags[:, flag_col[v]] != 0)
        if plots or diagnostics:
            utils.print_flagged_obs_number(logfile, "Frequent Value", variable, len(flag_locs[0]), noWrite = True)
        else:
            utils.print_flagged_obs_number(logfile, "Frequent Value", variable, len(flag_locs[0]))

        # copy flags into attribute
        st_var.flags[flag_locs] = 1
        
    station = utils.append_history(station, "Frequent Values Check")  
                     
    return # fvc