Beispiel #1
0
    def test_backend_change(self, user_expectation):
        """Test that VQE works when backend changes."""
        vqe = VQE(
            ansatz=TwoLocal(rotation_blocks=["ry", "rz"],
                            entanglement_blocks="cz"),
            optimizer=SLSQP(maxiter=2),
            expectation=user_expectation,
            quantum_instance=BasicAer.get_backend("statevector_simulator"),
        )
        result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        if user_expectation is not None:
            with self.subTest("User expectation kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        vqe.quantum_instance = BasicAer.get_backend("qasm_simulator")

        # works also if no expectation is set, since it will be determined automatically
        result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        if user_expectation is not None:
            with self.subTest(
                    "Change backend with user expectation, it is kept."):
                self.assertEqual(vqe.expectation, user_expectation)

        with self.subTest("Check results."):
            self.assertEqual(len(result0.optimal_point),
                             len(result1.optimal_point))
Beispiel #2
0
    def test_callback(self):
        """Test the callback on VQE."""
        history = {"eval_count": [], "parameters": [], "mean": [], "std": []}

        def store_intermediate_result(eval_count, parameters, mean, std):
            history["eval_count"].append(eval_count)
            history["parameters"].append(parameters)
            history["mean"].append(mean)
            history["std"].append(std)

        optimizer = COBYLA(maxiter=3)
        wavefunction = self.ry_wavefunction

        vqe = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            callback=store_intermediate_result,
            quantum_instance=self.qasm_simulator,
        )
        vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        self.assertTrue(
            all(isinstance(count, int) for count in history["eval_count"]))
        self.assertTrue(
            all(isinstance(mean, float) for mean in history["mean"]))
        self.assertTrue(all(isinstance(std, float) for std in history["std"]))
        for params in history["parameters"]:
            self.assertTrue(all(isinstance(param, float) for param in params))
Beispiel #3
0
 def test_with_two_qubit_reduction(self):
     """Test the VQE using TwoQubitReduction."""
     qubit_op = PauliSumOp.from_list([
         ("IIII", -0.8105479805373266),
         ("IIIZ", 0.17218393261915552),
         ("IIZZ", -0.22575349222402472),
         ("IZZI", 0.1721839326191556),
         ("ZZII", -0.22575349222402466),
         ("IIZI", 0.1209126326177663),
         ("IZZZ", 0.16892753870087912),
         ("IXZX", -0.045232799946057854),
         ("ZXIX", 0.045232799946057854),
         ("IXIX", 0.045232799946057854),
         ("ZXZX", -0.045232799946057854),
         ("ZZIZ", 0.16614543256382414),
         ("IZIZ", 0.16614543256382414),
         ("ZZZZ", 0.17464343068300453),
         ("ZIZI", 0.1209126326177663),
     ])
     tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op)
     for simulator in [self.qasm_simulator, self.statevector_simulator]:
         with self.subTest(f"Test for {simulator}."):
             vqe = VQE(
                 self.ry_wavefunction,
                 SPSA(maxiter=300, last_avg=5),
                 quantum_instance=simulator,
             )
             result = vqe.compute_minimum_eigenvalue(tapered_qubit_op)
             energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy
             self.assertAlmostEqual(result.eigenvalue.real,
                                    energy,
                                    places=2)
Beispiel #4
0
    def test_qasm_aux_operators_normalized(self):
        """Test VQE with qasm_simulator returns normalized aux_operator eigenvalues."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator)
        _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        opt_params = [
            3.50437328,
            3.87415376,
            0.93684363,
            5.92219622,
            -1.53527887,
            1.87941418,
            -4.5708326,
            0.70187027,
        ]

        vqe._ret.optimal_point = opt_params
        vqe._ret.optimal_parameters = dict(
            zip(sorted(wavefunction.parameters, key=lambda p: p.name),
                opt_params))

        with self.assertWarns(DeprecationWarning):
            optimal_vector = vqe.get_optimal_vector()

        self.assertAlmostEqual(sum(v**2 for v in optimal_vector.values()),
                               1.0,
                               places=4)
Beispiel #5
0
    def test_basic_aer_statevector(self):
        """Test the VQE on BasicAer's statevector simulator."""
        wavefunction = self.ryrz_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            optimizer=L_BFGS_B(),
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator"),
                basis_gates=["u1", "u2", "u3", "cx", "id"],
                coupling_map=[[0, 1]],
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        with self.subTest(msg="test eigenvalue"):
            self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy)

        with self.subTest(msg="test dimension of optimal point"):
            self.assertEqual(len(result.optimal_point), 16)

        with self.subTest(msg="assert cost_function_evals is set"):
            self.assertIsNotNone(result.cost_function_evals)

        with self.subTest(msg="assert optimizer_time is set"):
            self.assertIsNotNone(result.optimizer_time)
Beispiel #6
0
    def test_backend_change(self, user_expectation):
        """Test that VQE works when backend changes."""
        vqe = VQE(
            ansatz=TwoLocal(rotation_blocks=["ry", "rz"],
                            entanglement_blocks="cz"),
            optimizer=SLSQP(maxiter=2),
            expectation=user_expectation,
            quantum_instance=BasicAer.get_backend("statevector_simulator"),
        )
        result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        if user_expectation is not None:
            with self.subTest("User expectation kept."):
                self.assertEqual(vqe.expectation, user_expectation)
        else:
            with self.subTest("Expectation created."):
                self.assertIsInstance(vqe.expectation, ExpectationBase)
        try:
            vqe.quantum_instance = BasicAer.get_backend("qasm_simulator")
        except Exception as ex:  # pylint: disable=broad-except
            self.fail("Failed to change backend. Error: '{}'".format(str(ex)))
            return

        result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        if user_expectation is not None:
            with self.subTest(
                    "Change backend with user expectation, it is kept."):
                self.assertEqual(vqe.expectation, user_expectation)
        else:
            with self.subTest(
                    "Change backend without user expectation, one created."):
                self.assertIsInstance(vqe.expectation, ExpectationBase)

        with self.subTest("Check results."):
            self.assertEqual(len(result0.optimal_point),
                             len(result1.optimal_point))
Beispiel #7
0
    def test_chc_vscf(self):
        """ chc vscf test """

        co2_2modes_2modals_2body = [
            [[[[0, 0, 0]], 320.8467332810141], [[[0, 1, 1]],
                                                1760.878530705873],
             [[[1, 0, 0]], 342.8218290247543], [[[1, 1, 1]],
                                                1032.396323618631]],
            [[[[0, 0, 0], [1, 0, 0]], -57.34003649795117],
             [[[0, 0, 1], [1, 0, 0]], -56.33205925807966],
             [[[0, 1, 0], [1, 0, 0]], -56.33205925807966],
             [[[0, 1, 1], [1, 0, 0]], -60.13032761856809],
             [[[0, 0, 0], [1, 0, 1]], -65.09576309934431],
             [[[0, 0, 1], [1, 0, 1]], -62.2363839133389],
             [[[0, 1, 0], [1, 0, 1]], -62.2363839133389],
             [[[0, 1, 1], [1, 0, 1]], -121.5533969109279],
             [[[0, 0, 0], [1, 1, 0]], -65.09576309934431],
             [[[0, 0, 1], [1, 1, 0]], -62.2363839133389],
             [[[0, 1, 0], [1, 1, 0]], -62.2363839133389],
             [[[0, 1, 1], [1, 1, 0]], -121.5533969109279],
             [[[0, 0, 0], [1, 1, 1]], -170.744837386338],
             [[[0, 0, 1], [1, 1, 1]], -167.7433236025723],
             [[[0, 1, 0], [1, 1, 1]], -167.7433236025723],
             [[[0, 1, 1], [1, 1, 1]], -179.0536532281924]]
        ]
        num_modes = 2
        num_modals = [2, 2]

        vibrational_op_labels = _create_labels(co2_2modes_2modals_2body)
        vibr_op = VibrationalOp(vibrational_op_labels, num_modes, num_modals)

        converter = QubitConverter(DirectMapper())

        qubit_op = converter.convert_match(vibr_op)

        init_state = VSCF(num_modals)

        num_qubits = sum(num_modals)
        excitations = []
        excitations += generate_vibration_excitations(num_excitations=1,
                                                      num_modals=num_modals)
        excitations += generate_vibration_excitations(num_excitations=2,
                                                      num_modals=num_modals)
        chc_ansatz = CHC(num_qubits,
                         ladder=False,
                         excitations=excitations,
                         initial_state=init_state)

        backend = QuantumInstance(
            BasicAer.get_backend('statevector_simulator'),
            seed_transpiler=2,
            seed_simulator=2)
        optimizer = COBYLA(maxiter=1000)

        algo = VQE(chc_ansatz, optimizer=optimizer, quantum_instance=backend)
        vqe_result = algo.compute_minimum_eigenvalue(qubit_op)
        energy = vqe_result.optimal_value

        self.assertAlmostEqual(energy, self.reference_energy, places=4)
Beispiel #8
0
    def test_qasm_eigenvector_normalized(self):
        """Test VQE with qasm_simulator returns normalized eigenvector."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator)
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        amplitudes = list(result.eigenstate.values())
        self.assertAlmostEqual(np.linalg.norm(amplitudes), 1.0, places=4)
Beispiel #9
0
 def test_missing_varform_params(self):
     """Test specifying a variational form with no parameters raises an error."""
     circuit = QuantumCircuit(self.h2_op.num_qubits)
     vqe = VQE(
         ansatz=circuit,
         quantum_instance=BasicAer.get_backend("statevector_simulator"))
     with self.assertRaises(RuntimeError):
         vqe.compute_minimum_eigenvalue(operator=self.h2_op)
Beispiel #10
0
    def test_aux_operator_std_dev_aer_pauli(self):
        """Test non-zero standard deviations of aux operators with AerPauliExpectation."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            expectation=AerPauliExpectation(),
            optimizer=COBYLA(maxiter=0),
            quantum_instance=QuantumInstance(
                backend=Aer.get_backend("qasm_simulator"),
                shots=1,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6698863565455391,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.0,
                               places=6)

        # Go again with additional None and zero operators
        aux_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6036400943063891,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)
Beispiel #11
0
 def test_optimizer_callable(self):
     """Test passing a optimizer directly as callable."""
     ansatz = RealAmplitudes(1, reps=1)
     vqe = VQE(ansatz=ansatz,
               optimizer=_mock_optimizer,
               quantum_instance=self.statevector_simulator)
     result = vqe.compute_minimum_eigenvalue(Z)
     self.assertTrue(
         np.all(result.optimal_point == np.zeros(ansatz.num_parameters)))
Beispiel #12
0
    def test_aux_operators_list(self):
        """Test list-based aux_operators."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(ansatz=wavefunction,
                  quantum_instance=self.statevector_simulator)

        # Start with an empty list
        result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=[])
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertIsNone(result.aux_operator_eigenvalues)

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0)

        # Go again with additional None and zero operators
        extra_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=extra_ops)
        self.assertAlmostEqual(result.eigenvalue.real,
                               self.h2_energy,
                               places=6)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)
Beispiel #13
0
 def test_set_optimizer_to_none(self):
     """Tests that setting the optimizer to None results in the default behavior"""
     vqe = VQE(
         ansatz=self.ryrz_wavefunction,
         optimizer=L_BFGS_B(),
         quantum_instance=self.statevector_simulator,
     )
     vqe.optimizer = None
     self.assertIsInstance(vqe.optimizer, SLSQP)
Beispiel #14
0
 def test_circuit_input(self):
     """Test running the VQE on a plain QuantumCircuit object."""
     wavefunction = QuantumCircuit(2).compose(EfficientSU2(2))
     optimizer = SLSQP(maxiter=50)
     vqe = VQE(self.h2_op, wavefunction, optimizer=optimizer)
     result = vqe.run(self.statevector_simulator)
     self.assertAlmostEqual(result.eigenvalue.real,
                            self.h2_energy,
                            places=5)
Beispiel #15
0
 def test_optimizer_scipy_callable(self):
     """Test passing a SciPy optimizer directly as callable."""
     vqe = VQE(
         optimizer=partial(scipy_minimize,
                           method="L-BFGS-B",
                           options={"maxiter": 2}),
         quantum_instance=self.statevector_simulator,
     )
     result = vqe.compute_minimum_eigenvalue(Z)
     self.assertEqual(result.cost_function_evals, 20)
Beispiel #16
0
 def test_end2end_h2(self):
     """ end to end h2 """
     backend = BasicAer.get_backend('statevector_simulator')
     shots = 1
     optimizer = COBYLA(maxiter=1000)
     ryrz = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz')
     quantum_instance = QuantumInstance(backend, shots=shots)
     vqe = VQE(ryrz, optimizer=optimizer, quantum_instance=quantum_instance)
     result = vqe.compute_minimum_eigenvalue(self.qubit_op, aux_operators=self.aux_ops)
     self.assertAlmostEqual(result.eigenvalue.real, self.reference_energy, places=4)
Beispiel #17
0
 def _optimize(self, optimizer):
     """ launch vqe """
     qe = QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                          seed_simulator=aqua_globals.random_seed,
                          seed_transpiler=aqua_globals.random_seed)
     vqe = VQE(var_form=RealAmplitudes(),
               optimizer=optimizer,
               quantum_instance=qe)
     result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op)
     self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=1)
Beispiel #18
0
    def test_basic_aer_qasm(self):
        """Test the VQE on BasicAer's QASM simulator."""
        optimizer = SPSA(maxiter=300, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(self.h2_op, wavefunction, optimizer, max_evals_grouped=1)

        # TODO benchmark this later.
        result = vqe.run(self.qasm_simulator)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2)
Beispiel #19
0
 def test_max_evals_grouped(self, optimizer, places, max_evals_grouped):
     """ VQE Optimizers test """
     vqe = VQE(var_form=self.ryrz_wavefunction,
               optimizer=optimizer,
               max_evals_grouped=max_evals_grouped,
               quantum_instance=self.statevector_simulator)
     result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
     self.assertAlmostEqual(result.eigenvalue.real,
                            self.h2_energy,
                            places=places)
Beispiel #20
0
    def test_reuse(self):
        """Test re-using a VQE algorithm instance."""
        vqe = VQE()
        with self.subTest(msg="assert running empty raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        ansatz = TwoLocal(rotation_blocks=["ry", "rz"],
                          entanglement_blocks="cz")
        vqe.ansatz = ansatz
        with self.subTest(msg="assert missing operator raises AlgorithmError"):
            with self.assertRaises(AlgorithmError):
                _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op)

        vqe.expectation = MatrixExpectation()
        vqe.quantum_instance = self.statevector_simulator
        with self.subTest(msg="assert VQE works once all info is available"):
            result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
            self.assertAlmostEqual(result.eigenvalue.real,
                                   self.h2_energy,
                                   places=5)

        operator = PrimitiveOp(
            np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0,
                                                                  3]]))

        with self.subTest(msg="assert minimum eigensolver interface works"):
            result = vqe.compute_minimum_eigenvalue(operator=operator)
            self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5)
Beispiel #21
0
    def test_nft(self):
        """ Test NFT optimizer by using it """

        vqe = VQE(var_form=RealAmplitudes(),
                  optimizer=NFT(),
                  quantum_instance=QuantumInstance(
                      BasicAer.get_backend('statevector_simulator'),
                      seed_simulator=algorithm_globals.random_seed,
                      seed_transpiler=algorithm_globals.random_seed))
        result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.857275, places=6)
    def test_list(self):
        """ test AQGD optimizer with the parameters as lists. """
        q_instance = QuantumInstance(Aer.get_backend('statevector_simulator'),
                                     seed_simulator=algorithm_globals.random_seed,
                                     seed_transpiler=algorithm_globals.random_seed)

        aqgd = AQGD(maxiter=[1000, 1000, 1000], eta=[1.0, 0.5, 0.3], momentum=[0.0, 0.5, 0.75])
        vqe = VQE(ansatz=RealAmplitudes(),
                  optimizer=aqgd,
                  quantum_instance=q_instance)
        result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=3)
Beispiel #23
0
 def test_max_evals_grouped(self, optimizer, places, max_evals_grouped):
     """VQE Optimizers test"""
     with self.assertWarns(DeprecationWarning):
         vqe = VQE(
             ansatz=self.ryrz_wavefunction,
             optimizer=optimizer,
             max_evals_grouped=max_evals_grouped,
             quantum_instance=self.statevector_simulator,
             sort_parameters_by_name=True,
         )
     result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
     self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=places)
Beispiel #24
0
    def test_aux_operator_std_dev_pauli(self):
        """Test non-zero standard deviations of aux operators with PauliExpectation."""
        wavefunction = self.ry_wavefunction
        vqe = VQE(
            ansatz=wavefunction,
            expectation=PauliExpectation(),
            optimizer=COBYLA(maxiter=0),
            quantum_instance=self.qasm_simulator,
        )

        # Go again with two auxiliary operators
        aux_op1 = PauliSumOp.from_list([("II", 2.0)])
        aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5),
                                        ("XX", -0.5)])
        aux_ops = [aux_op1, aux_op2]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 2)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.6796875,
                               places=6)
        # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.02534712219145965,
                               places=6)

        # Go again with additional None and zero operators
        aux_ops = [*aux_ops, None, 0]
        result = vqe.compute_minimum_eigenvalue(self.h2_op,
                                                aux_operators=aux_ops)
        self.assertEqual(len(result.aux_operator_eigenvalues), 4)
        # expectation values
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0],
                               2.0,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0],
                               0.57421875,
                               places=6)
        self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0)
        self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0)
        # # standard deviations
        self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1],
                               0.026562146577166837,
                               places=6)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0)
        self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0)
Beispiel #25
0
    def test_basic_aer_qasm(self):
        """Test the VQE on BasicAer's QASM simulator."""
        optimizer = SPSA(maxiter=300, last_avg=5)
        wavefunction = self.ry_wavefunction

        vqe = VQE(var_form=wavefunction,
                  optimizer=optimizer,
                  max_evals_grouped=1,
                  quantum_instance=self.qasm_simulator)

        # TODO benchmark this later.
        result = vqe.compute_minimum_eigenvalue(operator=self.h2_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2)
    def test_int_values(self):
        """ test AQGD with int values passed as eta and momentum. """
        q_instance = QuantumInstance(Aer.get_backend('statevector_simulator'),
                                     seed_simulator=algorithm_globals.random_seed,
                                     seed_transpiler=algorithm_globals.random_seed)

        aqgd = AQGD(maxiter=1000, eta=1, momentum=0)
        vqe = VQE(ansatz=RealAmplitudes(),
                  optimizer=aqgd,
                  gradient=Gradient('lin_comb'),
                  quantum_instance=q_instance)
        result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=3)
    def test_simple(self):
        """ test AQGD optimizer with the parameters as single values."""
        q_instance = QuantumInstance(Aer.get_backend('statevector_simulator'),
                                     seed_simulator=algorithm_globals.random_seed,
                                     seed_transpiler=algorithm_globals.random_seed)

        aqgd = AQGD(momentum=0.0)
        vqe = VQE(ansatz=RealAmplitudes(),
                  optimizer=aqgd,
                  gradient=Gradient('fin_diff'),
                  quantum_instance=q_instance)
        result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op)
        self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=3)
    def test_chc_vscf(self):
        """ chc vscf test """

        co2_2modes_2modals_2body = [[[[[0, 0, 0]], 320.8467332810141],
                                     [[[0, 1, 1]], 1760.878530705873],
                                     [[[1, 0, 0]], 342.8218290247543],
                                     [[[1, 1, 1]], 1032.396323618631]],
                                    [[[[0, 0, 0], [1, 0, 0]], -57.34003649795117],
                                     [[[0, 0, 1], [1, 0, 0]], -56.33205925807966],
                                     [[[0, 1, 0], [1, 0, 0]], -56.33205925807966],
                                     [[[0, 1, 1], [1, 0, 0]], -60.13032761856809],
                                     [[[0, 0, 0], [1, 0, 1]], -65.09576309934431],
                                     [[[0, 0, 1], [1, 0, 1]], -62.2363839133389],
                                     [[[0, 1, 0], [1, 0, 1]], -62.2363839133389],
                                     [[[0, 1, 1], [1, 0, 1]], -121.5533969109279],
                                     [[[0, 0, 0], [1, 1, 0]], -65.09576309934431],
                                     [[[0, 0, 1], [1, 1, 0]], -62.2363839133389],
                                     [[[0, 1, 0], [1, 1, 0]], -62.2363839133389],
                                     [[[0, 1, 1], [1, 1, 0]], -121.5533969109279],
                                     [[[0, 0, 0], [1, 1, 1]], -170.744837386338],
                                     [[[0, 0, 1], [1, 1, 1]], -167.7433236025723],
                                     [[[0, 1, 0], [1, 1, 1]], -167.7433236025723],
                                     [[[0, 1, 1], [1, 1, 1]], -179.0536532281924]]]

        basis = [2, 2]

        bosonic_op = BosonicOperator(co2_2modes_2modals_2body, basis)
        qubit_op = bosonic_op.mapping('direct', threshold=1e-5)

        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', category=DeprecationWarning)
            init_state = VSCF(basis)

        num_qubits = sum(basis)
        uvcc_varform = UVCC(num_qubits, basis, [0, 1])
        excitations = uvcc_varform.excitations_in_qubit_format()
        chc_varform = CHC(num_qubits, ladder=False, excitations=excitations,
                          initial_state=init_state)

        backend = QuantumInstance(BasicAer.get_backend('statevector_simulator'),
                                  seed_transpiler=2, seed_simulator=2)
        optimizer = COBYLA(maxiter=1000)

        algo = VQE(chc_varform,
                   optimizer=optimizer,
                   quantum_instance=backend)
        vqe_result = algo.compute_minimum_eigenvalue(qubit_op)

        energy = vqe_result['optimal_value']

        self.assertAlmostEqual(energy, self.reference_energy, places=4)
Beispiel #29
0
    def test_construct_circuit(self, expectation, num_circuits):
        """Test construct circuits returns QuantumCircuits and the right number of them."""
        try:
            wavefunction = EfficientSU2(2, reps=1)
            vqe = VQE(self.h2_op, wavefunction, expectation=expectation)
            params = [0] * wavefunction.num_parameters
            circuits = vqe.construct_circuit(params)

            self.assertEqual(len(circuits), num_circuits)
            for circuit in circuits:
                self.assertIsInstance(circuit, QuantumCircuit)
        except MissingOptionalLibraryError as ex:
            self.skipTest(str(ex))
            return
Beispiel #30
0
    def test_construct_eigenstate_from_optpoint(self):
        """Test constructing the eigenstate from the optimal point, if the default ansatz is used."""

        # use Hamiltonian yielding more than 11 parameters in the default ansatz
        hamiltonian = Z ^ Z ^ Z
        optimizer = SPSA(maxiter=1, learning_rate=0.01, perturbation=0.01)
        quantum_instance = QuantumInstance(
            backend=BasicAer.get_backend("statevector_simulator"),
            basis_gates=["u3", "cx"])
        vqe = VQE(optimizer=optimizer, quantum_instance=quantum_instance)
        result = vqe.compute_minimum_eigenvalue(hamiltonian)

        optimal_circuit = vqe.ansatz.bind_parameters(result.optimal_point)
        self.assertTrue(Statevector(result.eigenstate).equiv(optimal_circuit))