Beispiel #1
0
class TestAerPauliExpectation(QiskitAquaTestCase):
    """Pauli Change of Basis Expectation tests."""
    def setUp(self) -> None:
        super().setUp()
        backend = Aer.get_backend('qasm_simulator')
        self.sampler = CircuitSampler(backend, attach_results=True)
        self.expect = AerPauliExpectation()

    def test_pauli_expect_pair(self):
        """ pauli expect pair test """
        op = (Z ^ Z)
        # wf = (Pl^Pl) + (Ze^Ze)
        wf = CX @ (H ^ I) @ Zero

        converted_meas = self.expect.convert(~StateFn(op) @ wf)
        sampled = self.sampler.convert(converted_meas)
        self.assertAlmostEqual(sampled.eval(), 0, delta=.1)

    def test_pauli_expect_single(self):
        """ pauli expect single test """
        # TODO bug in Aer with Y measurements
        # paulis = [Z, X, Y, I]
        paulis = [Z, X, I]
        states = [Zero, One, Plus, Minus, S @ Plus, S @ Minus]
        for pauli, state in itertools.product(paulis, states):
            converted_meas = self.expect.convert(~StateFn(pauli) @ state)
            matmulmean = state.adjoint().to_matrix() @ pauli.to_matrix(
            ) @ state.to_matrix()
            sampled = self.sampler.convert(converted_meas)
            self.assertAlmostEqual(sampled.eval(), matmulmean, delta=.1)

    def test_pauli_expect_op_vector(self):
        """ pauli expect op vector test """
        paulis_op = ListOp([X, Y, Z, I])
        converted_meas = self.expect.convert(~StateFn(paulis_op))

        plus_mean = (converted_meas @ Plus)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0, 0, 1],
                                             decimal=1)

        minus_mean = (converted_meas @ Minus)
        sampled_minus = self.sampler.convert(minus_mean)
        np.testing.assert_array_almost_equal(sampled_minus.eval(),
                                             [-1, 0, 0, 1],
                                             decimal=1)

        zero_mean = (converted_meas @ Zero)
        sampled_zero = self.sampler.convert(zero_mean)
        # TODO bug with Aer's Y
        np.testing.assert_array_almost_equal(sampled_zero.eval(), [0, 1, 1, 1],
                                             decimal=1)

        sum_zero = (Plus + Minus) * (.5**.5)
        sum_zero_mean = (converted_meas @ sum_zero)
        sampled_zero_mean = self.sampler.convert(sum_zero_mean)
        # !!NOTE!!: Depolarizing channel (Sampling) means interference
        # does not happen between circuits in sum, so expectation does
        # not equal expectation for Zero!!
        np.testing.assert_array_almost_equal(sampled_zero_mean.eval(),
                                             [0, 0, 0, 2],
                                             decimal=1)

    def test_pauli_expect_state_vector(self):
        """ pauli expect state vector test """
        states_op = ListOp([One, Zero, Plus, Minus])

        paulis_op = X
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        sampled = self.sampler.convert(converted_meas)

        # Small test to see if execution results are accessible
        for composed_op in sampled:
            self.assertIn('counts', composed_op[0].execution_results)

        np.testing.assert_array_almost_equal(sampled.eval(), [0, 0, 1, -1],
                                             decimal=1)

    def test_pauli_expect_op_vector_state_vector(self):
        """ pauli expect op vector state vector test """
        # TODO Bug in Aer with Y Measurements!!
        # paulis_op = ListOp([X, Y, Z, I])
        paulis_op = ListOp([X, Z, I])
        states_op = ListOp([One, Zero, Plus, Minus])

        valids = [
            [+0, 0, 1, -1],
            # [+0, 0, 0, 0],
            [-1, 1, 0, -0],
            [+1, 1, 1, 1]
        ]
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        sampled = self.sampler.convert(converted_meas)
        np.testing.assert_array_almost_equal(sampled.eval(), valids, decimal=1)

    def test_multi_representation_ops(self):
        """ Test observables with mixed representations """
        mixed_ops = ListOp([X.to_matrix_op(), H, H + I, X])
        converted_meas = self.expect.convert(~StateFn(mixed_ops))

        plus_mean = (converted_meas @ Plus)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(),
                                             [1, .5**.5, (1 + .5**.5), 1],
                                             decimal=1)

    def test_parameterized_qobj(self):
        """ Test direct-to-aer parameter passing in Qobj header. """
        pass
class TestAerPauliExpectation(QiskitAquaTestCase):
    """Pauli Change of Basis Expectation tests."""
    def setUp(self) -> None:
        super().setUp()
        try:
            from qiskit import Aer

            self.seed = 97
            self.backend = Aer.get_backend('qasm_simulator')
            q_instance = QuantumInstance(self.backend,
                                         seed_simulator=self.seed,
                                         seed_transpiler=self.seed)
            self.sampler = CircuitSampler(q_instance, attach_results=True)
            self.expect = AerPauliExpectation()
        except Exception as ex:  # pylint: disable=broad-except
            self.skipTest(
                "Aer doesn't appear to be installed. Error: '{}'".format(
                    str(ex)))
            return

    def test_pauli_expect_pair(self):
        """ pauli expect pair test """
        op = (Z ^ Z)
        # wvf = (Pl^Pl) + (Ze^Ze)
        wvf = CX @ (H ^ I) @ Zero

        converted_meas = self.expect.convert(~StateFn(op) @ wvf)
        sampled = self.sampler.convert(converted_meas)
        self.assertAlmostEqual(sampled.eval(), 0, delta=.1)

    def test_pauli_expect_single(self):
        """ pauli expect single test """
        # TODO bug in Aer with Y measurements
        # paulis = [Z, X, Y, I]
        paulis = [Z, X, I]
        states = [Zero, One, Plus, Minus, S @ Plus, S @ Minus]
        for pauli, state in itertools.product(paulis, states):
            converted_meas = self.expect.convert(~StateFn(pauli) @ state)
            matmulmean = state.adjoint().to_matrix() @ pauli.to_matrix(
            ) @ state.to_matrix()
            sampled = self.sampler.convert(converted_meas)
            self.assertAlmostEqual(sampled.eval(), matmulmean, delta=.1)

    def test_pauli_expect_op_vector(self):
        """ pauli expect op vector test """
        paulis_op = ListOp([X, Y, Z, I])
        converted_meas = self.expect.convert(~StateFn(paulis_op))

        plus_mean = (converted_meas @ Plus)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0, 0, 1],
                                             decimal=1)

        minus_mean = (converted_meas @ Minus)
        sampled_minus = self.sampler.convert(minus_mean)
        np.testing.assert_array_almost_equal(sampled_minus.eval(),
                                             [-1, 0, 0, 1],
                                             decimal=1)

        zero_mean = (converted_meas @ Zero)
        sampled_zero = self.sampler.convert(zero_mean)
        np.testing.assert_array_almost_equal(sampled_zero.eval(), [0, 0, 1, 1],
                                             decimal=1)

        sum_zero = (Plus + Minus) * (.5**.5)
        sum_zero_mean = (converted_meas @ sum_zero)
        sampled_zero_mean = self.sampler.convert(sum_zero_mean)
        # !!NOTE!!: Depolarizing channel (Sampling) means interference
        # does not happen between circuits in sum, so expectation does
        # not equal expectation for Zero!!
        np.testing.assert_array_almost_equal(sampled_zero_mean.eval(),
                                             [0, 0, 0, 2],
                                             decimal=1)

    def test_pauli_expect_state_vector(self):
        """ pauli expect state vector test """
        states_op = ListOp([One, Zero, Plus, Minus])

        paulis_op = X
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        sampled = self.sampler.convert(converted_meas)

        # Small test to see if execution results are accessible
        for composed_op in sampled:
            self.assertIn('counts', composed_op[0].execution_results)

        np.testing.assert_array_almost_equal(sampled.eval(), [0, 0, 1, -1],
                                             decimal=1)

    def test_pauli_expect_op_vector_state_vector(self):
        """ pauli expect op vector state vector test """
        # TODO Bug in Aer with Y Measurements!!
        # paulis_op = ListOp([X, Y, Z, I])
        paulis_op = ListOp([X, Z, I])
        states_op = ListOp([One, Zero, Plus, Minus])

        valids = [
            [+0, 0, 1, -1],
            # [+0, 0, 0, 0],
            [-1, 1, 0, -0],
            [+1, 1, 1, 1]
        ]
        converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op)
        sampled = self.sampler.convert(converted_meas)
        np.testing.assert_array_almost_equal(sampled.eval(), valids, decimal=1)

    def test_multi_representation_ops(self):
        """ Test observables with mixed representations """
        mixed_ops = ListOp([X.to_matrix_op(), H, H + I, X])
        converted_meas = self.expect.convert(~StateFn(mixed_ops))

        plus_mean = (converted_meas @ Plus)
        sampled_plus = self.sampler.convert(plus_mean)
        np.testing.assert_array_almost_equal(sampled_plus.eval(),
                                             [1, .5**.5, (1 + .5**.5), 1],
                                             decimal=1)

    def test_parameterized_qobj(self):
        """ grouped pauli expectation test """
        two_qubit_h2 = (-1.052373245772859 * I ^ I) + \
                       (0.39793742484318045 * I ^ Z) + \
                       (-0.39793742484318045 * Z ^ I) + \
                       (-0.01128010425623538 * Z ^ Z) + \
                       (0.18093119978423156 * X ^ X)

        aer_sampler = CircuitSampler(self.sampler.quantum_instance,
                                     param_qobj=True,
                                     attach_results=True)

        var_form = RealAmplitudes()
        var_form.num_qubits = 2

        observable_meas = self.expect.convert(
            StateFn(two_qubit_h2, is_measurement=True))
        ansatz_circuit_op = CircuitStateFn(var_form)
        expect_op = observable_meas.compose(ansatz_circuit_op).reduce()

        def generate_parameters(num):
            param_bindings = {}
            for param in var_form.parameters:
                values = []
                for _ in range(num):
                    values.append(np.random.rand())
                param_bindings[param] = values
            return param_bindings

        def validate_sampler(ideal, sut, param_bindings):
            expect_sampled = ideal.convert(expect_op,
                                           params=param_bindings).eval()
            actual_sampled = sut.convert(expect_op,
                                         params=param_bindings).eval()
            self.assertAlmostEqual(actual_sampled, expect_sampled, delta=.1)

        def get_circuit_templates(sampler):
            return sampler._transpiled_circ_templates

        def validate_aer_binding_used(templates):
            self.assertIsNotNone(templates)

        def validate_aer_templates_reused(prev_templates, cur_templates):
            self.assertIs(prev_templates, cur_templates)

        validate_sampler(self.sampler, aer_sampler, generate_parameters(1))
        cur_templates = get_circuit_templates(aer_sampler)

        validate_aer_binding_used(cur_templates)

        prev_templates = cur_templates
        validate_sampler(self.sampler, aer_sampler, generate_parameters(2))
        cur_templates = get_circuit_templates(aer_sampler)

        validate_aer_templates_reused(prev_templates, cur_templates)

        prev_templates = cur_templates
        validate_sampler(self.sampler, aer_sampler,
                         generate_parameters(2))  # same num of params
        cur_templates = get_circuit_templates(aer_sampler)

        validate_aer_templates_reused(prev_templates, cur_templates)

    def test_pauli_expectation_param_qobj(self):
        """ Test PauliExpectation with param_qobj """
        q_instance = QuantumInstance(self.backend,
                                     seed_simulator=self.seed,
                                     seed_transpiler=self.seed,
                                     shots=20000)
        qubit_op = (1 * I ^ I) + (2 * I ^ Z) + (3 * Z ^ I) + (4 * Z ^ Z) + (
            5 * X ^ X)
        var_form = RealAmplitudes(qubit_op.num_qubits)
        ansatz_circuit_op = CircuitStateFn(var_form)
        observable = PauliExpectation().convert(~StateFn(qubit_op))
        expect_op = observable.compose(ansatz_circuit_op).reduce()
        params1 = {}
        params2 = {}
        for param in var_form.parameters:
            params1[param] = [0]
            params2[param] = [0, 0]

        sampler1 = CircuitSampler(backend=q_instance, param_qobj=False)
        samples1 = sampler1.convert(expect_op, params=params1)
        val1 = np.real(samples1.eval())[0]
        samples2 = sampler1.convert(expect_op, params=params2)
        val2 = np.real(samples2.eval())
        sampler2 = CircuitSampler(backend=q_instance, param_qobj=True)
        samples3 = sampler2.convert(expect_op, params=params1)
        val3 = np.real(samples3.eval())
        samples4 = sampler2.convert(expect_op, params=params2)
        val4 = np.real(samples4.eval())

        np.testing.assert_array_almost_equal([val1] * 2, val2, decimal=2)
        np.testing.assert_array_almost_equal(val1, val3, decimal=2)
        np.testing.assert_array_almost_equal([val1] * 2, val4, decimal=2)