Beispiel #1
0
def transpile(dag,
              basis_gates='u1,u2,u3,cx,id',
              coupling_map=None,
              initial_layout=None,
              get_layout=False,
              format='dag',
              seed=None,
              pass_manager=None):
    """Transform a dag circuit into another dag circuit (transpile), through
    consecutive passes on the dag.

    Args:
        dag (DAGCircuit): dag circuit to transform via transpilation
        basis_gates (str): a comma separated string for the target basis gates
        coupling_map (list): A graph of coupling::

            [
             [control0(int), target0(int)],
             [control1(int), target1(int)],
            ]

            eg. [[0, 2], [1, 2], [1, 3], [3, 4]}

        initial_layout (dict): A mapping of qubit to qubit::

                              {
                                ("q", start(int)): ("q", final(int)),
                                ...
                              }
                              eg.
                              {
                                ("q", 0): ("q", 0),
                                ("q", 1): ("q", 1),
                                ("q", 2): ("q", 2),
                                ("q", 3): ("q", 3)
                              }
        get_layout (bool): flag for returning the final layout after mapping
        format (str): The target format of the compilation:
            {'dag', 'json', 'qasm'}
        seed (int): random seed for the swap mapper
        pass_manager (PassManager): pass manager instance for the transpilation process
            If None, a default set of passes are run.
            Otherwise, the passes defined in it will run.
            If contains no passes in it, no dag transformations occur.

    Returns:
        DAGCircuit: transformed dag
        DAGCircuit, dict: transformed dag along with the final layout on backend qubits

    Raises:
        TranspilerError: if the format is not valid.
    """
    # TODO: `basis_gates` will be removed after we have the unroller pass.
    # TODO: `coupling_map`, `initial_layout`, `get_layout`, `seed` removed after mapper pass.

    # TODO: move this to the mapper pass
    num_qubits = sum(dag.qregs.values())
    if num_qubits == 1 or coupling_map == "all-to-all":
        coupling_map = None

    final_layout = None

    if pass_manager:
        # run the passes specified by the pass manager
        # TODO return the property set too. See #1086
        dag = pass_manager.run_passes(dag)
    else:
        # default set of passes
        # TODO: move each step here to a pass, and use a default passmanager below
        basis = basis_gates.split(',') if basis_gates else []
        dag_unroller = DagUnroller(dag, DAGBackend(basis))
        dag = dag_unroller.expand_gates()
        # if a coupling map is given compile to the map
        if coupling_map:
            logger.info("pre-mapping properties: %s", dag.property_summary())
            # Insert swap gates
            coupling = Coupling(coupling_list2dict(coupling_map))
            removed_meas = remove_last_measurements(dag)
            logger.info("measurements moved: %s", removed_meas)
            logger.info("initial layout: %s", initial_layout)
            dag, final_layout, last_layout = swap_mapper(dag,
                                                         coupling,
                                                         initial_layout,
                                                         trials=20,
                                                         seed=seed)
            logger.info("final layout: %s", final_layout)
            # Expand swaps
            dag_unroller = DagUnroller(dag, DAGBackend(basis))
            dag = dag_unroller.expand_gates()
            # Change cx directions
            dag = direction_mapper(dag, coupling)
            # Simplify cx gates
            cx_cancellation(dag)
            # Simplify single qubit gates
            dag = optimize_1q_gates(dag)
            return_last_measurements(dag, removed_meas, last_layout)
            logger.info("post-mapping properties: %s", dag.property_summary())

    # choose output format
    # TODO: do we need all of these formats, or just the dag?
    if format == 'dag':
        compiled_circuit = dag
    elif format == 'json':
        # FIXME: JsonBackend is wrongly taking an ordered dict as basis, not list
        dag_unroller = DagUnroller(dag, JsonBackend(dag.basis))
        compiled_circuit = dag_unroller.execute()
    elif format == 'qasm':
        compiled_circuit = dag.qasm()
    else:
        raise TranspilerError('unrecognized circuit format')

    if get_layout:
        return compiled_circuit, final_layout
    return compiled_circuit
Beispiel #2
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            skip_transpiler=False):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend or str): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        skip_transpiler (bool): If True, bypass most of the compilation process and
            creates a qobj with minimal check nor translation
    Returns:
        Qobj: the qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    # pylint: disable=redefined-builtin

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')

    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    if isinstance(backend, str):
        try:
            backend = Aer.get_backend(backend)
        except KeyError:
            backend = IBMQ.get_backend(backend)

    pass_manager = None  # default pass manager which executes predetermined passes
    if skip_transpiler:  # empty pass manager which does nothing
        pass_manager = PassManager()

    backend_conf = backend.configuration()
    backend_name = backend_conf['name']
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    qobj_config = deepcopy(config or {})
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'memory_slots': 0
    })

    qobj = Qobj(qobj_id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))

    if seed:
        qobj.config.seed = seed

    qobj.experiments = parallel_map(_build_exp_parallel,
                                    list(range(len(circuits))),
                                    task_args=(circuits, backend),
                                    task_kwargs={
                                        'initial_layout': initial_layout,
                                        'basis_gates': basis_gates,
                                        'config': config,
                                        'coupling_map': coupling_map,
                                        'seed': seed,
                                        'pass_manager': pass_manager
                                    })

    qobj.config.memory_slots = max(experiment.config.memory_slots
                                   for experiment in qobj.experiments)

    qobj.config.n_qubits = max(experiment.config.n_qubits
                               for experiment in qobj.experiments)

    return qobj
Beispiel #3
0
def transpile(circuits,
              backend,
              basis_gates=None,
              coupling_map=None,
              initial_layout=None,
              seed_mapper=None,
              hpc=None,
              pass_manager=None):
    """transpile a list of circuits into a dags.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        seed_mapper (int): random seed for the swap_mapper
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        dags: a list of dags.

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    # FIXME: THIS NEEDS TO BE CLEANED UP -- some things to decide for list of circuits:
    # 1. do all circuits have same coupling map?
    # 2. do all circuit have the same basis set?
    # 3. do they all have same registers etc?
    backend_conf = backend.configuration()
    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # step 1: Making the list of dag circuits
    dags = _circuits_2_dags(circuits)

    # step 2: Transpile all the dags

    # FIXME: Work-around for transpiling multiple circuits with different qreg names.
    # Make compile take a list of initial_layouts.
    _initial_layout = initial_layout

    # Pick a good initial layout if coupling_map is not already satisfied
    # otherwise keep it as q[i]->q[i].
    # TODO: move this inside mapper pass.
    initial_layouts = []
    for dag in dags:
        if (initial_layout is None and not backend.configuration()['simulator']
                and not _matches_coupling_map(dag, coupling_map)):
            _initial_layout = _pick_best_layout(dag, backend)
        initial_layouts.append(_initial_layout)

    dags = _dags_2_dags(dags,
                        basis_gates=basis_gates,
                        coupling_map=coupling_map,
                        initial_layouts=initial_layouts,
                        seed_mapper=seed_mapper,
                        pass_manager=pass_manager)

    # TODO: change it to circuits
    # TODO: make it parallel
    return dags
Beispiel #4
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        QobjExperiment: Experiment to be wrapped in a Qobj.

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    # FIXME: THIS NEEDS TO BE CLEANED UP -- some things to decide for list of circuits:
    # 1. do all circuits have same coupling map?
    # 2. do all circuit have the same basis set?
    # 3. do they all have same registers etc?
    backend_conf = backend.configuration()
    backend_name = backend_conf['name']
    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # step 1: Making the list of dag circuits
    dags = _circuits_2_dags(circuits)

    # step 2: Transpile all the dags

    # FIXME: Work-around for transpiling multiple circuits with different qreg names.
    # Make compile take a list of initial_layouts.
    _initial_layout = initial_layout

    # Pick a good initial layout if coupling_map is not already satisfied
    # otherwise keep it as q[i]->q[i].
    # TODO: move this inside mapper pass.
    initial_layouts = []
    for dag in dags:
        if (initial_layout is None and not backend.configuration()['simulator']
                and not _matches_coupling_map(dag, coupling_map)):
            _initial_layout = _pick_best_layout(dag, backend)
        initial_layouts.append(_initial_layout)

    dags = _transpile_dags(dags,
                           basis_gates=basis_gates,
                           coupling_map=coupling_map,
                           initial_layouts=initial_layouts,
                           seed=seed,
                           pass_manager=pass_manager)

    # step 3: Making a qobj
    qobj = _dags_2_qobj(dags,
                        backend_name=backend_name,
                        config=config,
                        shots=shots,
                        max_credits=max_credits,
                        qobj_id=qobj_id,
                        basis_gates=basis_gates,
                        coupling_map=coupling_map,
                        seed=seed)

    return qobj
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have prefern
    qobj_config = deepcopy(config or {})
    # TODO: "memory_slots" is required by the qobj schema in the top-level
    # qobj.config, and is user-defined. At the moment is set to the maximum
    # number of *register* slots for the circuits, in order to have `measure`
    # behave properly until the transition is over; and each circuit stores
    # its memory_slots in its configuration.
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'memory_slots': 0
    })

    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # Step 2 and 3: transpile and populate the circuits
    for circuit in circuits:
        experiment = _compile_single_circuit(circuit, backend, config,
                                             basis_gates, coupling_map,
                                             initial_layout, seed,
                                             pass_manager)
        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    # Update the `memory_slots` value.
    # TODO: remove when `memory_slots` can be provided by the user.
    qobj.config.memory_slots = max(experiment.config.memory_slots
                                   for experiment in qobj.experiments)

    return qobj
def transpile(dag_circuit,
              basis_gates='u1,u2,u3,cx,id',
              coupling_map=None,
              initial_layout=None,
              get_layout=False,
              format='dag',
              seed=None,
              pass_manager=None):
    """Transform a dag circuit into another dag circuit (transpile), through
    consecutive passes on the dag.

    Args:
        dag_circuit (DAGCircuit): dag circuit to transform via transpilation
        basis_gates (str): a comma seperated string for the target basis gates
        coupling_map (list): A graph of coupling::

            [
             [control0(int), target0(int)],
             [control1(int), target1(int)],
            ]

            eg. [[0, 2], [1, 2], [1, 3], [3, 4]}

        initial_layout (dict): A mapping of qubit to qubit::

                              {
                                ("q", start(int)): ("q", final(int)),
                                ...
                              }
                              eg.
                              {
                                ("q", 0): ("q", 0),
                                ("q", 1): ("q", 1),
                                ("q", 2): ("q", 2),
                                ("q", 3): ("q", 3)
                              }
        get_layout (bool): flag for returning the layout
        format (str): The target format of the compilation:
            {'dag', 'json', 'qasm'}
        seed (int): random seed for simulators
        pass_manager (PassManager): pass manager instance for the tranpilation process
            If None, a default set of passes are run.
            Otherwise, the passes defined in it will run.
            If contains no passes in it, no dag transformations occur.

    Returns:
        object: If get_layout == False, the compiled circuit in the specified
            format. If get_layout == True, a tuple is returned, with the
            second element being the layout.

    Raises:
        TranspilerError: if the format is not valid.
    """
    final_layout = None

    if pass_manager:
        # run the passes specified by the pass manager
        for pass_ in pass_manager.passes():
            pass_.run(dag_circuit)
    else:
        # default set of passes
        # TODO: move each step here to a pass, and use a default passmanager below
        basis = basis_gates.split(',') if basis_gates else []
        dag_unroller = DagUnroller(dag_circuit, DAGBackend(basis))
        dag_circuit = dag_unroller.expand_gates()
        # if a coupling map is given compile to the map
        if coupling_map:
            logger.info("pre-mapping properties: %s",
                        dag_circuit.property_summary())
            # Insert swap gates
            coupling = Coupling(coupling_list2dict(coupling_map))
            logger.info("initial layout: %s", initial_layout)
            dag_circuit, final_layout = swap_mapper(dag_circuit,
                                                    coupling,
                                                    initial_layout,
                                                    trials=20,
                                                    seed=seed)
            logger.info("final layout: %s", final_layout)
            # Expand swaps
            dag_unroller = DagUnroller(dag_circuit, DAGBackend(basis))
            dag_circuit = dag_unroller.expand_gates()
            # Change cx directions
            dag_circuit = direction_mapper(dag_circuit, coupling)
            # Simplify cx gates
            cx_cancellation(dag_circuit)
            # Simplify single qubit gates
            dag_circuit = optimize_1q_gates(dag_circuit)
            logger.info("post-mapping properties: %s",
                        dag_circuit.property_summary())

    # choose output format
    # TODO: do we need all of these formats, or just the dag?
    if format == 'dag':
        compiled_circuit = dag_circuit
    elif format == 'json':
        # FIXME: JsonBackend is wrongly taking an ordered dict as basis, not list
        dag_unroller = DagUnroller(dag_circuit, JsonBackend(dag_circuit.basis))
        compiled_circuit = dag_unroller.execute()
    elif format == 'qasm':
        compiled_circuit = dag_circuit.qasm()
    else:
        raise TranspilerError('unrecognized circuit format')

    if get_layout:
        return compiled_circuit, final_layout
    return compiled_circuit
Beispiel #7
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        obj: the qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    qobj = {}

    # step 1: populate the qobj-level `id`
    qobj_id = qobj_id or str(uuid.uuid4())
    qobj['id'] = qobj_id

    # step 2: populate the qobj-level `config`
    qobj['config'] = {
        'max_credits': max_credits,
        'shots': shots,
        'backend_name': backend_name
    }

    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')

    # step 3: populate the `circuits` in qobj, after compiling each circuit
    qobj['circuits'] = []
    if not basis_gates:
        basis_gates = backend_conf['basis_gates']
    if not coupling_map:
        coupling_map = backend_conf['coupling_map']

    for circuit in circuits:
        job = {}

        # step 1: populate the circuit-level `name`
        job["name"] = circuit.name

        # step 2: populate the circuit-level `config`
        if config is None:
            config = {}
        job["config"] = copy.deepcopy(config)
        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        job["config"]["coupling_map"] = coupling_map
        job["config"]["basis_gates"] = basis_gates
        job["config"]["seed"] = seed

        # step 3: populate the circuit `instructions` after compilation
        # step 3a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # step 3b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # step 3c: dag -> json
        # TODO: populate the Qobj object when Qobj class exists
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None
        job["config"]["layout"] = list_layout
        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()
        job["compiled_circuit"] = json_circuit

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        job["compiled_circuit_qasm"] = dag_circuit.qasm(qeflag=True,
                                                        eval_symbols=True)

        # add job to the qobj
        qobj["circuits"].append(job)

    return qobj
Beispiel #8
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have prefern
    qobj_config = deepcopy(config or {})
    # TODO: "register_slots" is required by the qobj schema in the top-level
    # qobj.config. In this implementation, is overridden by the individual
    # experiment.config entries (hence the 0 should never be used).
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'register_slots': 0
    })

    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # Step 2 and 3: transpile and populate the circuits
    for circuit in circuits:
        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        # Step 2a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # Step 2b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # Step 2c: dag -> json
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None

        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()

        # Step 3a: create the Experiment based on json_circuit
        experiment = QobjExperiment.from_dict(json_circuit)
        # Step 3b: populate the Experiment configuration and header
        experiment.header.name = circuit.name
        # TODO: place in header or config?
        experiment_config = deepcopy(config or {})
        experiment_config.update({
            'coupling_map':
            coupling_map,
            'basis_gates':
            basis_gates,
            'layout':
            list_layout,
            'register_slots':
            sum(register.size for register in circuit.get_cregs().values())
        })
        experiment.config = QobjItem(**experiment_config)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        experiment.header.compiled_circuit_qasm = dag_circuit.qasm(
            qeflag=True, eval_symbols=True)

        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    return qobj
Beispiel #9
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty circuits
    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(max_credits=max_credits,
                                  shots=shots,
                                  backend_name=backend_name),
                circuits=[])

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    for circuit in circuits:
        # Step 1: create the experiment configuration.
        config = config or {}
        circuit_config = copy.deepcopy(config)

        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        circuit_config["coupling_map"] = coupling_map
        circuit_config["basis_gates"] = basis_gates
        circuit_config["seed"] = seed
        circuit_config["layout"] = None  # set during step 3.

        # Step 2: create the QobjExperiment, with empty compiled circuits.
        experiment = QobjExperiment(
            name=circuit.name,
            config=QobjExperimentConfig(**circuit_config),
            compiled_circuit=None,
            compiled_circuit_qasm=None)

        # Step 3: populate the circuit `instructions` after compilation
        # Step 3a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # Step 3b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # Step 3c: dag -> json
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None
        experiment.config.layout = list_layout
        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()
        experiment.compiled_circuit = QobjCompiledCircuit.from_dict(
            json_circuit)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        experiment.compiled_circuit_qasm = dag_circuit.qasm(qeflag=True,
                                                            eval_symbols=True)

        # add job to the qobj
        qobj.circuits.append(experiment)

    return qobj