def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(
            atom='Li 0 0 0; H 0 0 3.14',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            redo_scf=True)

        self.wf = SlaterCombinedJastrow(mol,
                                        kinetic='auto',
                                        include_all_mo=False,
                                        configs='single_double(2,2)',
                                        jastrow_kernel={
                                            'ee': PadeJastrowKernelElecElec,
                                            'en': PadeJastrowKernelElecNuc,
                                            'een': BoysHandyJastrowKernel},
                                        jastrow_kernel_kwargs={
                                            'ee': {'w': 1.},
                                            'en': {'w': 1.},
                                            'een': {}})

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight
        self.nbatch = 11
        self.pos = torch.Tensor(np.random.rand(
            self.nbatch,  self.wf.nelec*3))
        self.pos.requires_grad = True
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrowBackFlow(mol,
                                        kinetic='jacobi',
                                        jastrow_kernel=PadeJastrowKernel,
                                        include_all_mo=True,
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelInverse,
                                        orbital_dependent_backflow=False)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 5
        self.pos = torch.Tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = CorrelatedOrbital(mol,
                                    kinetic='auto',
                                    jastrow_type='pade_jastrow',
                                    configs='single_double(2,4)',
                                    include_all_mo=True)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.wf.jastrow.weight.data = torch.rand(self.wf.jastrow.weight.shape)

        self.nbatch = 3
        self.pos = torch.tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))

        self.pos.requires_grad = True
Beispiel #4
0
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(
            atom='Li 0 0 0; H 0 0 1.',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            redo_scf=True)

        self.wf = SlaterJastrow(mol,
                                kinetic='auto',
                                configs='ground_state',
                                jastrow_kernel=FullyConnectedJastrowKernel)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 10
        self.pos = 1E-2 * torch.as_tensor(np.random.rand(
            self.nbatch, self.wf.nelec*3))
        self.pos.requires_grad = True
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterOrbitalDependentJastrow(
            mol,
            kinetic='auto',
            jastrow_kernel=FullyConnectedJastrowKernel,
            configs='single_double(2,4)',
            include_all_mo=True)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 3
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))

        self.pos.requires_grad = True
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(
            atom='Li 0 0 0; H 0 0 1.',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            redo_scf=True)

        self.wf = SlaterJastrow(mol,
                                kinetic='auto',
                                include_all_mo=True,
                                configs='cas(2,2)')

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 10
        self.pos = torch.Tensor(
            np.random.rand(self.nbatch, mol.nelec*3))
        self.pos.requires_grad = True
Beispiel #7
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelPowerSum,
                                        orbital_dependent_backflow=False,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #8
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = CorrelatedOrbital(
            self.mol,
            kinetic='auto',
            configs='cas(2,2)',
            jastrow_type=FullyConnectedJastrow,
            # jastrow_type='pade_jastrow',
            include_all_mo=True)

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverOrbital(wf=self.wf,
                                    sampler=self.sampler,
                                    optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69
Beispiel #9
0
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g')

        self.orb_conf = OrbitalConfigurations(mol)
Beispiel #10
0
    def setUp(self):
        hvd.init()

        torch.manual_seed(0)
        np.random.seed(0)

        set_torch_double_precision()

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(
            atom='H 0 0 -0.69; H 0 0 0.69',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            rank=hvd.local_rank())

        # wave function
        self.wf = SlaterJastrow(self.mol, kinetic='jacobi',
                                configs='cas(2,2)',
                                cuda=False)

        # sampler
        self.sampler = Metropolis(
            nwalkers=200,
            nstep=200,
            step_size=0.2,
            ndim=self.wf.ndim,
            nelec=self.wf.nelec,
            init=self.mol.domain('atomic'),
            move={
                'type': 'all-elec',
                'proba': 'normal'})

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrowHorovod(wf=self.wf, sampler=self.sampler,
                                                 optimizer=self.opt, rank=hvd.rank())

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # orbital
        self.wf = SlaterJastrow(self.mol)
Beispiel #12
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/LiH_adf_dz.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterOrbitalDependentJastrow(self.mol,
                                                kinetic='jacobi',
                                                configs='cas(2,2)',
                                                include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        for ker in self.wf.jastrow.jastrow_kernel.jastrow_functions:
            ker.weight.data = torch.rand(1)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #13
0
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='C 0 0 0',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = Orbital(mol, kinetic='auto',
                          configs='ground_state').gto2sto()

        self.pos = -0.25 + 0.5 * torch.tensor(np.random.rand(10, 18))
        self.pos.requires_grad = True
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='He 0.5 0 0; He -0.5 0 0',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrow(mol,
                                jastrow_kernel=FullyConnectedJastrowKernel,
                                kinetic='jacobi',
                                include_all_mo=True,
                                configs='ground_state')

        self.nbatch = 100
Beispiel #15
0
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='H 0 0 0; H 0 0 1.',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = Orbital(mol,
                          kinetic='auto',
                          include_all_mo=False,
                          configs='single_double(2,2)')

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.pos = torch.tensor(np.random.rand(10, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #16
0
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #17
0
from qmctorch.wavefunction import SlaterJastrow
from qmctorch.solver import SolverSlaterJastrowHorovod
from qmctorch.sampler import Metropolis
from qmctorch.utils import set_torch_double_precision
from qmctorch.utils import (plot_energy, plot_data)

# bond distance : 0.74 A -> 1.38 a
# optimal H positions +0.69 and -0.69
# ground state energy : -31.688 eV -> -1.16 hartree
# bond dissociation energy 4.478 eV -> 0.16 hartree

hvd.init()
if torch.cuda.is_available():
    torch.cuda.set_device(hvd.rank())

set_torch_double_precision()

# define the molecule
mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
               calculator='pyscf',
               basis='sto-3g',
               unit='bohr',
               rank=hvd.local_rank())

# define the wave function
wf = SlaterJastrow(mol, kinetic='jacobi', configs='cas(2,2)', cuda=False)

# sampler
sampler = Metropolis(nwalkers=200,
                     nstep=200,
                     step_size=0.2,