def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrowBackFlow(mol,
                                        kinetic='jacobi',
                                        jastrow_kernel=PadeJastrowKernel,
                                        include_all_mo=True,
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelInverse,
                                        orbital_dependent_backflow=False)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 5
        self.pos = torch.Tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #2
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelPowerSum,
                                        orbital_dependent_backflow=False,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #3
0
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        path_hdf5 = (
            PATH_TEST / 'hdf5/LiH_adf_dz.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol, kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        orbital_dependent_backflow=True,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(
            nwalkers=500,
            nstep=200,
            step_size=0.05,
            ndim=self.wf.ndim,
            nelec=self.wf.nelec,
            init=self.mol.domain('normal'),
            move={
                'type': 'all-elec',
                'proba': 'normal'})

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf, sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(np.random.rand(
            self.nbatch, self.wf.nelec*3))
        self.pos.requires_grad = True
Beispiel #4
0
class MyBackflow(BackFlowKernelBase):
    def __init__(self, mol, cuda, size=16):
        super().__init__(mol, cuda)
        self.fc1 = nn.Linear(1, size, bias=False)
        self.fc2 = nn.Linear(size, 1, bias=False)

    def forward(self, x):
        original_shape = x.shape
        x = x.reshape(-1, 1)
        x = self.fc2(self.fc1(x))
        return x.reshape(*original_shape)


# define the molecule
mol = Molecule(atom='Li 0. 0. 0.; H 3.14 0. 0.',
               unit='angs',
               calculator='pyscf',
               basis='sto-3g',
               name='LiH')

# define the wave function
wf = SlaterJastrowBackFlow(mol,
                           kinetic='jacobi',
                           backflow_kernel=MyBackflow,
                           backflow_kernel_kwargs={'size': 64},
                           configs='single_double(2,2)')

pos = torch.rand(10, wf.nelec * 3)
print(wf(pos))
class TestLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        orbital_dependent_backflow=True,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)
        print(torch.stack([eauto, ejac], axis=1).squeeze())
        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

    def test2_wf_opt_grad_auto(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
class TestSlaterJastrowBackFlow(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrowBackFlow(mol,
                                        kinetic='jacobi',
                                        jastrow_kernel=PadeJastrowKernel,
                                        include_all_mo=True,
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelInverse,
                                        orbital_dependent_backflow=False)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 5
        self.pos = torch.Tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_forward(self):
        wfvals = self.wf(self.pos)

    def test_antisymmetry(self):
        """Test that the wf values are antisymmetric
        wrt exchange of 2 electrons of same spin."""
        wfvals_ref = self.wf(self.pos)

        if self.wf.nelec < 4:
            print('Warning : antisymmetry cannot be tested with \
                    only %d electrons' % self.wf.nelec)
            return

        # test spin up
        pos_xup = self.pos.clone()
        perm_up = list(range(self.wf.nelec))
        perm_up[0] = 1
        perm_up[1] = 0
        pos_xup = pos_xup.reshape(self.nbatch, self.wf.nelec, 3)
        pos_xup = pos_xup[:, perm_up, :].reshape(self.nbatch,
                                                 self.wf.nelec * 3)

        wfvals_xup = self.wf(pos_xup)
        assert (torch.allclose(wfvals_ref, -1. * wfvals_xup))

    def test_jacobian_mo(self):
        """Jacobian of the BF MOs."""

        mo = self.wf.pos2mo(self.pos)
        dmo = self.wf.pos2mo(self.pos, derivative=1)

        dmo_grad = grad(mo, self.pos, grad_outputs=torch.ones_like(mo))[0]
        assert (torch.allclose(dmo.sum(), dmo_grad.sum()))

        psum_mo = dmo.sum(-1).sum(-1)
        psum_mo_grad = dmo_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1)
        psum_mo_grad = psum_mo_grad.T
        assert (torch.allclose(psum_mo, psum_mo_grad))

    def test_grad_mo(self):
        """Gradients of the BF MOs."""

        mo = self.wf.pos2mo(self.pos)

        dao = self.wf.ao(self.pos, derivative=1, sum_grad=False)
        dmo = self.wf.ao2mo(dao)

        dmo_grad = grad(mo, self.pos, grad_outputs=torch.ones_like(mo))[0]
        assert (torch.allclose(dmo.sum(), dmo_grad.sum()))

        dmo = dmo.sum(-1).sum(-1)
        dmo_grad = dmo_grad.T

        assert (torch.allclose(dmo, dmo_grad))

    def test_hess_mo(self):
        """Hessian of the MOs."""
        val = self.wf.pos2mo(self.pos)

        d2val_grad = hess(val, self.pos)
        d2ao = self.wf.ao(self.pos, derivative=2, sum_hess=False)
        d2val = self.wf.ao2mo(d2ao)

        assert (torch.allclose(d2val.sum(), d2val_grad.sum()))

        d2val = d2val.reshape(4, 3, 5, 4, 6).sum(1).sum(-1).sum(-1)
        d2val_grad = d2val_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1)
        d2val_grad = d2val_grad.T
        assert (torch.allclose(d2val, d2val_grad))

    def test_grad_wf(self):
        pass

        # grad_auto = self.wf.gradients_autograd(self.pos)
        # grad_jac = self.wf.gradients_jacobi(self.pos)

        # assert torch.allclose(
        #     grad_auto.data, grad_jac.data, rtol=1E-4, atol=1E-4)

    def test_local_energy(self):

        self.wf.kinetic_energy = self.wf.kinetic_energy_autograd
        eloc_auto = self.wf.local_energy(self.pos)

        self.wf.kinetic_energy = self.wf.kinetic_energy_jacobi
        eloc_jac = self.wf.local_energy(self.pos)

        assert torch.allclose(eloc_auto.data,
                              eloc_jac.data,
                              rtol=1E-4,
                              atol=1E-4)

    def test_kinetic_energy(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        print(ejac)
        print(eauto)

        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)
Beispiel #7
0
class TestCompareSlaterJastrowOrbitalDependentBackFlow(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrowBackFlow(mol,
                                        kinetic='jacobi',
                                        include_all_mo=True,
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelInverse,
                                        orbital_dependent_backflow=True)

        for ker in self.wf.ao.backflow_trans.backflow_kernel.orbital_dependent_kernel:
            ker.weight.data *= 0

        self.wf_ref = SlaterJastrow(mol,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight
        self.wf_ref.fc.weight.data = self.random_fc_weight

        self.nbatch = 5
        self.pos = torch.Tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_forward(self):
        """Check that backflow give same results as normal SlaterJastrow."""
        wf_val = self.wf(self.pos)
        wf_val_ref = self.wf_ref(self.pos)

        assert (torch.allclose(wf_val, wf_val_ref))

    def test_jacobian_mo(self):
        """Check that backflow give same results as normal SlaterJastrow."""

        dmo = self.wf.pos2mo(self.pos, derivative=1)
        dmo_ref = self.wf_ref.pos2mo(self.pos, derivative=1)
        assert (torch.allclose(dmo.sum(0), dmo_ref))

    def test_hess_mo(self):
        """Check that backflow give same results as normal SlaterJastrow."""
        d2ao = self.wf.ao(self.pos, derivative=2, sum_hess=False)
        d2val = self.wf.ao2mo(d2ao)

        d2ao_ref = self.wf_ref.ao(self.pos, derivative=2, sum_hess=True)
        d2val_ref = self.wf_ref.ao2mo(d2ao_ref)
        assert (torch.allclose(d2val_ref, d2val.sum(0)))

    def test_grad_wf(self):
        pass

    def test_local_energy(self):

        self.wf.kinetic_energy = self.wf.kinetic_energy_jacobi
        eloc_jac = self.wf.local_energy(self.pos)

        self.wf_ref.kinetic_energy = self.wf_ref.kinetic_energy_jacobi
        eloc_jac_ref = self.wf_ref.local_energy(self.pos)

        assert torch.allclose(eloc_jac_ref.data,
                              eloc_jac.data,
                              rtol=1E-4,
                              atol=1E-4)

    def test_kinetic_energy(self):

        ejac_ref = self.wf_ref.kinetic_energy_jacobi(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        assert torch.allclose(ejac_ref.data, ejac.data, rtol=1E-4, atol=1E-4)
Beispiel #8
0
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True
Beispiel #9
0
class TestCompareLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        # compute the kinetic energy using bf orb
        reset_generator()
        e_bf = self.wf.kinetic_energy_jacobi(self.pos)

        # compute the kinetic energy
        reset_generator()
        e_ref = self.wf_ref.kinetic_energy_jacobi(self.pos)

        print(torch.stack([e_bf, e_ref], axis=1).squeeze())
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        reset_generator()
        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        # sample and compute observables
        reset_generator()
        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        # compare values
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

        assert torch.allclose(v_bf.data, v_ref.data, rtol=1E-4, atol=1E-4)

    def test2_wf_opt_grad_auto(self):

        nepoch = 5

        # optimize using backflow
        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        self.solver.configure_resampling(mode='never')

        reset_generator()
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using ref
        self.solver_ref.configure(track=['local_energy'],
                                  loss='energy',
                                  grad='auto')
        self.solver_ref.configure_resampling(mode='never')

        reset_generator()
        obs_ref = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs_ref.energy))

        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)

    def test3_wf_opt_grad_manual(self):

        nepoch = 5

        # optimize using backflow
        reset_generator()
        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using backflow
        reset_generator()
        self.solver_ref.configure(track=['local_energy', 'parameters'],
                                  loss='energy',
                                  grad='manual')
        obs = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs.energy))

        # compare values
        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)