def test_getRandomBatch():
    """Batch tensors should have the correct shape"""

    batchSize = 22
    X, y = qrcodes.getRandomBatch(batchSize)

    y = np.asarray(y)

    assert_equals((batchSize, qrcodes.IMAGE_SIZE, qrcodes.IMAGE_SIZE, 1),
                  X.shape)
    assert_equals((batchSize, len(qrcodes.CHARACTER_SET)), y.shape)
Beispiel #2
0
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1, name="weights")
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape, name="bias")
    return tf.Variable(initial)


# Validation set
NUM_TEST_IMAGES = 5000
print("Creating {} random test images ... ".format(NUM_TEST_IMAGES),
      end="",
      flush=True)
test_images, test_labels = qrcodes.getRandomBatch(size=NUM_TEST_IMAGES)
print("done")

# Inputs
with tf.name_scope("input"):
    x_image = tf.placeholder(tf.float32,
                             shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                             name="x_image")
    y_ = tf.placeholder(tf.float32, shape=[None, NUM_OUTPUTS], name="y_")
    tf.summary.image('x_image', x_image, max_outputs=3)

with tf.name_scope("dropout_input"):
    keep_prob = tf.placeholder(tf.float32, name="keep_probability")

# Fully connected layer
NUM_FULLY_CONNECTED_1 = 128
Beispiel #3
0
NUM_TRAIN_IMAGES = 500
NUM_VALID_IMAGES = 50
NUM_TEST_IMAGES = 5
#
HSIZE_IMAGE = 21
VSIZE_IMAGE = 21

#
#img = qrcode.make("asdfgjkl1234")
#img.save('./tmp.png')
#s

# Validation set

#print("Creating {} random test images ... ".format(NUM_TEST_IMAGES), end="", flush=True)
train_images, train_labels = qrcodes.getRandomBatch(size=NUM_TRAIN_IMAGES)
#print("done")

train_images = train_images.reshape(NUM_TRAIN_IMAGES, HSIZE_IMAGE, VSIZE_IMAGE)

print(train_images.shape)

#- Display Train Image sample
for i in range(3 * 4):
    plt.subplot(3, 4, i + 1)
    plt.imshow(train_images[i], 'gray')

plt.suptitle("train images", fontsize=12)
plt.show()

#print(string(train_labels[0]))