def setUp(self):
        # Initial Values
        a_0 = 100
        a_1 = 0.5
        rho = 0.9
        sigma_d = 0.05
        beta = 0.95
        c = 2
        gamma = 50.0
        theta = 0.002
        ac = (a_0 - c) / 2.0

        R = np.array([[0, ac, 0], [ac, -a_1, 0.5], [0., 0.5, 0]])

        R = -R
        Q = gamma / 2
        Q_pf = 0.

        A = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., rho]])
        B = np.array([[0.], [1.], [0.]])
        B_pf = np.zeros((3, 1))

        C = np.array([[0.], [0.], [sigma_d]])

        # the *_pf endings refer to an example with pure forecasting
        # (see p171 in Robustness)
        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.rblq_test_pf = RBLQ(Q_pf, R, A, B_pf, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta)
        self.methods = ['doubling', 'qz']
Beispiel #2
0
    def setUp(self):
        # Initial Values
        a_0     = 100
        a_1     = 0.5
        rho     = 0.9
        sigma_d = 0.05
        beta    = 0.95
        c       = 2
        gamma   = 50.0
        theta = 0.002
        ac    = (a_0 - c) / 2.0

        R = np.array([[0,  ac,    0],
                      [ac, -a_1, 0.5],
                      [0., 0.5,  0]])

        R = -R
        Q = gamma / 2

        A = np.array([[1., 0., 0.],
                      [0., 1., 0.],
                      [0., 0., rho]])
        B = np.array([[0.],
                      [1.],
                      [0.]])
        C = np.array([[0.],
                      [0.],
                      [sigma_d]])


        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta)

        self.Fr, self.Kr, self.Pr = self.rblq_test.robust_rule()
Beispiel #3
0
    def setUp(self):
        # Initial Values
        a_0     = 100
        a_1     = 0.5
        rho     = 0.9
        sigma_d = 0.05
        beta    = 0.95
        c       = 2
        gamma   = 50.0
        theta = 0.002
        ac    = (a_0 - c) / 2.0

        R = np.array([[0,  ac,    0],
                      [ac, -a_1, 0.5],
                      [0., 0.5,  0]])

        R = -R
        Q = gamma / 2
        Q_pf = 0.

        A = np.array([[1., 0., 0.],
                      [0., 1., 0.],
                      [0., 0., rho]])
        B = np.array([[0.],
                      [1.],
                      [0.]])
        B_pf = np.zeros((3, 1))

        C = np.array([[0.],
                      [0.],
                      [sigma_d]])

        # the *_pf endings refer to an example with pure forecasting
        # (see p171 in Robustness)
        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.rblq_test_pf = RBLQ(Q_pf, R, A, B_pf, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta)

        self.Fr, self.Kr, self.Pr = self.rblq_test.robust_rule()
        self.Fr_pf, self.Kr_pf, self.Pr_pf = self.rblq_test_pf.robust_rule()
Beispiel #4
0
class TestRBLQControl(unittest.TestCase):

    def setUp(self):
        # Initial Values
        a_0     = 100
        a_1     = 0.5
        rho     = 0.9
        sigma_d = 0.05
        beta    = 0.95
        c       = 2
        gamma   = 50.0
        theta = 0.002
        ac    = (a_0 - c) / 2.0

        R = np.array([[0,  ac,    0],
                      [ac, -a_1, 0.5],
                      [0., 0.5,  0]])

        R = -R
        Q = gamma / 2
        Q_pf = 0.

        A = np.array([[1., 0., 0.],
                      [0., 1., 0.],
                      [0., 0., rho]])
        B = np.array([[0.],
                      [1.],
                      [0.]])
        B_pf = np.zeros((3, 1))

        C = np.array([[0.],
                      [0.],
                      [sigma_d]])

        # the *_pf endings refer to an example with pure forecasting
        # (see p171 in Robustness)
        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.rblq_test_pf = RBLQ(Q_pf, R, A, B_pf, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta=beta)
        self.methods = ['doubling', 'qz']

    def tearDown(self):
        del self.rblq_test
        del self.rblq_test_pf

    def test_pure_forecasting(self):
        self.assertTrue(self.rblq_test_pf.pure_forecasting)

    def test_robust_rule_vs_simple(self):
        rblq = self.rblq_test
        rblq_pf = self.rblq_test_pf

        for method in self.methods:
            Fr, Kr, Pr = self.rblq_test.robust_rule(method=method)
            Fr_pf, Kr_pf, Pr_pf = self.rblq_test_pf.robust_rule(method=method)

            Fs, Ks, Ps = rblq.robust_rule_simple(P_init=Pr, tol=1e-12)
            Fs_pf, Ks_pf, Ps_pf = rblq_pf.robust_rule_simple(
                P_init=Pr_pf, tol=1e-12)

            assert_allclose(Fr, Fs, rtol=1e-4)
            assert_allclose(Kr, Ks, rtol=1e-4)
            assert_allclose(Pr, Ps, rtol=1e-4)

            atol = 1e-10
            assert_allclose(Fr_pf, Fs_pf, rtol=1e-4)
            assert_allclose(Kr_pf, Ks_pf, rtol=1e-4, atol=atol)
            assert_allclose(Pr_pf, Ps_pf, rtol=1e-4, atol=atol)


    def test_f2k_and_k2f(self):
        rblq = self.rblq_test

        for method in self.methods:
            Fr, Kr, Pr = self.rblq_test.robust_rule(method=method)
            K_f2k, P_f2k = rblq.F_to_K(Fr, method=method)
            F_k2f, P_k2f = rblq.K_to_F(Kr, method=method)
            assert_allclose(K_f2k, Kr, rtol=1e-4)
            assert_allclose(F_k2f, Fr, rtol=1e-4)
            assert_allclose(P_f2k, P_k2f, rtol=1e-4)

    def test_evaluate_F(self):
        rblq = self.rblq_test
        for method in self.methods:
            Fr, Kr, Pr = self.rblq_test.robust_rule(method=method)

            Kf, Pf, df, Of, of = rblq.evaluate_F(Fr)

            # In the future if we wanted, we could check more things, but I
            # think the other pieces are basically just plugging these into
            # equations so if these hold then the others should be correct
            # as well.
            assert_allclose(Pf, Pr)
            assert_allclose(Kf, Kr)
Beispiel #5
0
class TestRBLQControl(unittest.TestCase):

    def setUp(self):
        # Initial Values
        a_0     = 100
        a_1     = 0.5
        rho     = 0.9
        sigma_d = 0.05
        beta    = 0.95
        c       = 2
        gamma   = 50.0
        theta = 0.002
        ac    = (a_0 - c) / 2.0

        R = np.array([[0,  ac,    0],
                      [ac, -a_1, 0.5],
                      [0., 0.5,  0]])

        R = -R
        Q = gamma / 2
        Q_pf = 0.

        A = np.array([[1., 0., 0.],
                      [0., 1., 0.],
                      [0., 0., rho]])
        B = np.array([[0.],
                      [1.],
                      [0.]])
        B_pf = np.zeros((3, 1))

        C = np.array([[0.],
                      [0.],
                      [sigma_d]])

        # the *_pf endings refer to an example with pure forecasting
        # (see p171 in Robustness)
        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.rblq_test_pf = RBLQ(Q_pf, R, A, B_pf, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta)

        self.Fr, self.Kr, self.Pr = self.rblq_test.robust_rule()
        self.Fr_pf, self.Kr_pf, self.Pr_pf = self.rblq_test_pf.robust_rule()

    def tearDown(self):
        del self.rblq_test
        del self.rblq_test_pf

    def test_pure_forecasting(self):
        self.assertTrue(self.rblq_test_pf.pure_forecasting)

    def test_robust_rule_vs_simple(self):
        rblq = self.rblq_test
        rblq_pf = self.rblq_test_pf
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr
        Fr_pf, Kr_pf, Pr_pf = self.Fr_pf, self.Kr_pf, self.Pr_pf

        Fs, Ks, Ps = rblq.robust_rule_simple(P_init=Pr, tol=1e-12)
        Fs_pf, Ks_pf, Ps_pf = rblq_pf.robust_rule_simple(P_init=Pr_pf, tol=1e-12)

        assert_allclose(Fr, Fs, rtol=1e-4)
        assert_allclose(Kr, Ks, rtol=1e-4)
        assert_allclose(Pr, Ps, rtol=1e-4)

        atol = 1e-10
        assert_allclose(Fr_pf, Fs_pf, rtol=1e-4)
        assert_allclose(Kr_pf, Ks_pf, rtol=1e-4, atol=atol)
        assert_allclose(Pr_pf, Ps_pf, rtol=1e-4, atol=atol)


    def test_f2k_and_k2f(self):
        rblq = self.rblq_test
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr

        K_f2k, P_f2k = rblq.F_to_K(Fr)
        F_k2f, P_k2f = rblq.K_to_F(Kr)

        assert_allclose(K_f2k, Kr, rtol=1e-4)
        assert_allclose(F_k2f, Fr, rtol=1e-4)
        assert_allclose(P_f2k, P_k2f, rtol=1e-4)

    def test_evaluate_F(self):
        rblq = self.rblq_test
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr

        Kf, Pf, df, Of, of = rblq.evaluate_F(Fr)

        # In the future if we wanted, we could check more things, but I
        # think the other pieces are basically just plugging these into
        # equations so if these hold then the others should be correct
        # as well.
        assert_allclose(Pf, Pr)
        assert_allclose(Kf, Kr)
Beispiel #6
0
class TestRBLQControl(unittest.TestCase):

    def setUp(self):
        # Initial Values
        a_0     = 100
        a_1     = 0.5
        rho     = 0.9
        sigma_d = 0.05
        beta    = 0.95
        c       = 2
        gamma   = 50.0
        theta = 0.002
        ac    = (a_0 - c) / 2.0

        R = np.array([[0,  ac,    0],
                      [ac, -a_1, 0.5],
                      [0., 0.5,  0]])

        R = -R
        Q = gamma / 2

        A = np.array([[1., 0., 0.],
                      [0., 1., 0.],
                      [0., 0., rho]])
        B = np.array([[0.],
                      [1.],
                      [0.]])
        C = np.array([[0.],
                      [0.],
                      [sigma_d]])


        self.rblq_test = RBLQ(Q, R, A, B, C, beta, theta)
        self.lq_test = LQ(Q, R, A, B, C, beta)

        self.Fr, self.Kr, self.Pr = self.rblq_test.robust_rule()

    def tearDown(self):
        del self.rblq_test

    def test_robust_rule_vs_simple(self):
        rblq = self.rblq_test
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr

        Fs, Ks, Ps = rblq.robust_rule_simple(P_init=Pr, tol=1e-12)

        assert_allclose(Fr, Fs, rtol=1e-4)
        assert_allclose(Kr, Ks, rtol=1e-4)
        assert_allclose(Pr, Ps, rtol=1e-4)

    def test_f2k_and_k2f(self):
        rblq = self.rblq_test
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr

        K_f2k, P_f2k = rblq.F_to_K(Fr)
        F_k2f, P_k2f = rblq.K_to_F(Kr)

        assert_allclose(K_f2k, Kr, rtol=1e-4)
        assert_allclose(F_k2f, Fr, rtol=1e-4)
        assert_allclose(P_f2k, P_k2f, rtol=1e-4)

    def test_evaluate_F(self):
        rblq = self.rblq_test
        Fr, Kr, Pr = self.Fr, self.Kr, self.Pr

        Kf, Pf, df, Of, of = rblq.evaluate_F(Fr)

        # In the future if we wanted, we could check more things, but I
        # think the other pieces are basically just plugging these into
        # equations so if these hold then the others should be correct
        # as well.
        assert_allclose(Pf, Pr)
        assert_allclose(Kf, Kr)