Beispiel #1
0
    def test_group_targets(self):
        data = pd.read_csv(self.path_data_B)
        meta = json.load(open(self.path_meta_B))

        weight = '_'.join(['weights', self.scheme_name_A3])

        # Run weights for scheme_A3
        engine_B = WeightEngine(data=data, meta=meta)
        engine_B.add_scheme(scheme=self.scheme_A3,
                            key='identity',
                            verbose=False)
        engine_B.run()

        data_A3 = engine_B.dataframe("scheme_name_A3")

        # check identical weighted column frequencies
        df = data_A3.pivot_table(values=[weight],
                                 index=['profile_gender'],
                                 columns=['age_group'],
                                 aggfunc='sum')

        for column in df.columns.tolist():
            self.assertTrue(
                numpy.allclose(df[column].values, numpy.array([1.645, 1.855])))

        # check weighted group frequencies have equal proportions
        values = data_A3.pivot_table(values=[weight],
                                     index=['age_group'],
                                     aggfunc='sum').values
        self.assertTrue(numpy.allclose(values, 3.5))
Beispiel #2
0
    def test_wdf_structure(self):
        data = pd.read_csv(self.path_data_exA)
        engine = WeightEngine(data)

        targets_gender = [45.6, 54.4]
        targets_locality = [10, 15, 20, 25, 30]
        weight_targets = [{
            'gender':
            {code: prop
             for code, prop in enumerate(targets_gender, start=1)}
        }, {
            'locality': {
                code: prop
                for code, prop in enumerate(targets_locality, start=1)
            }
        }]

        scheme = Rim('complex_filter')

        scheme.add_group(name='W1, male',
                         filter_def='Wave==1 & religion==1',
                         targets=weight_targets)
        scheme.add_group(name='W2, female',
                         filter_def='Wave==2 & religion==2',
                         targets=weight_targets)

        engine.add_scheme(scheme, key='unique_id', verbose=False)
        engine.run()

        wdf = engine.dataframe('complex_filter')

        self.assertEqual(
            sorted(wdf.columns.tolist()),
            sorted([
                'unique_id', 'gender', 'locality', 'weights_complex_filter',
                'Wave', 'religion'
            ]))
        self.assertTrue(len(wdf.index) == 596)