Beispiel #1
0
    def test_104_check_a_b(self):
        for aaa in [pi / 6, pi / 3, pi, pi + pi / 3, pi + pi / 6]:
            q = Qubits.create(1, [(0, cos(aaa)), (1, sin(aaa))])
            assert self.check_a_b(q, aaa) == True

            q = Qubits.create(1, [(0, -sin(aaa)), (1, cos(aaa))])
            assert self.check_a_b(q, aaa) == False
Beispiel #2
0
 def test_07_controlled_x_general(self):
     for ix in range(20):
         a, b, c, d = self.random_unit_vector(4)
         q = Qubits.create(2, [(0, a), (1, b), (2, c), (3, d)])
         target = Qubits.create(2, [(0, a), (1, b), (2, d), (3, c)])
         print "before", q
         self.controlled_x_general(q)
         print "after", q
         self.assert_qubits(q, target)
Beispiel #3
0
    def test_06_controlled_x(self):
        """// Task 6. Controlled X gate with |0⟩ target
    // Input: Two unentangled qubits (stored in an array of length 2).
    //        The first qubit will be in state |ψ⟩ = α |0⟩ + β |1⟩, the second - in state |0⟩
    //        (this can be written as two-qubit state (α|0⟩ + β|1⟩) ⊕ |0⟩).
    // Goal:  Change the two-qubit state to α |00⟩ + β |11⟩ using only single-qubit gates and joint measurements.
    //        Do not use two-qubit gates.
    // You do not need to allocate extra qubits."""
        for _ in range(20):
            for rnd in [0.1, 0.9]:
                a, b = self.random_unit_vector(2)
                q = Qubits.create(2, [(0, a), (2, b)])

                qq = q.clone()
                Gates.CNOT(qq, 0, 1)
                self.controlled_x(q, rnd)
                self.assert_qubits(q, qq)
Beispiel #4
0
    def test_05_different_basis(self):
        """// Task 5. Parity measurement in different basis
    // Input: Two qubits (stored in an array) which are guaranteed to be
    //        either in superposition α|00⟩ + β|01⟩ + β|10⟩ + α|11⟩
    //        or in superposition α|00⟩ - β|01⟩ + β|10⟩ - α|11⟩.
    // Output: 0 if qubits were in the first superposition,
    //         1 if they were in the second superposition.
    // The state of the qubits at the end of the operation should be the same as the starting state."""

        for _ in range(10):
            for mul in [1, -1]:
                a, b = self.random_unit_vector(2)
                a = a / sqrt(2.0)
                b = b / sqrt(2.0)
                q = Qubits.create(2, [(0, a), (1, mul * b), (2, b),
                                      (3, mul * a)])
                qq = q.clone()
                d = self.different_basis(q)
                self.assert_qubits(q, qq)
                expected = 0 if mul == 1 else 1
                assert d == expected
Beispiel #5
0
 def test_106_basis_state_measurement(self):
     for ix in range(4):
         q = Qubits.create(2, [(ix, 1)])
         assert self.basis_state_measurement(q) == ix