Beispiel #1
0
def renew_probalities(data):
    '''
    :param new_qubit_state: 0 or 1
    :param distr: current distribution of all fields
    :return: new distribution of all fields
    '''

    #new_qubit_state = int(round(sum([qubit.randbin(data, data.F) for i in range(data.num_of_repetitions)])/data.num_of_repetitions))
    new_qubit_state = [qubit.randbin(data, data.F) for i in range(data.num_of_repetitions)]
    distr_storage.old_distr = data.probability_distribution.copy() # saving current meanings to reaccount all
def renew_probalities(data):
    '''
    :param new_qubit_state: 0 or 1
    :param distr: current distribution of all fields
    :return: new distribution of all fields
    '''

    #new_qubit_state = int(round(sum([qubit.randbin(data, data.F) for i in range(data.num_of_repetitions)])/data.num_of_repetitions))
    new_qubit_state = [
        qubit.randbin(data, data.F) for i in range(data.num_of_repetitions)
    ]
    distr_storage.old_distr = data.probability_distribution.copy(
    )  # saving current meanings to reaccount all P(F_i) at once

    for i in range(data.fields_number - 1, -1, -1):
        data.probability_distribution[i] = reaccount_P_F_i(
            i, new_qubit_state, data.F_min + data.delta_F * i, data)

    data.probability_distribution = normalise(data)
def perform():
    experimentData = ExperimentData()
    F = experimentData.F
    sigma = {}
    a_from_t_sum = {}  #sensitivity
    a_from_step = {}  #sensitivity
    N = 90
    t_sum = 0
    epsilon = 10**(-3)
    prev_sigma = experimentData.F_max - experimentData.F_min
    flag = False
    prev_step = 0
    #

    print(experimentData.probability_distribution)  # initial
    print(experimentData.fields_number)
    for step in range(N):

        bayesians_learning.renew_probalities(qubit.randbin(experimentData, F),
                                             experimentData)
        #bayesians_learning.renew_probalities(qubit.randbin3(experimentData, F), experimentData)
        #bayesians_learning.renew_probalities(qubit.randbin2(experimentData, F), experimentData)
        #bayesians_learning.renew_probalities(ramsey_qubit.output(experimentData.t), experimentData)
        t_sum += experimentData.t

        x_peak, y_peak = find_peak(experimentData)
        current_sigma = find_sigma_2(x_peak, y_peak, experimentData)

        a_from_t_sum[t_sum] = current_sigma * (t_sum)**0.5
        a_from_step[step] = current_sigma * (t_sum)**0.5

        if current_sigma != 0:
            sigma[t_sum] = current_sigma

        if step <= 50 and prev_sigma == experimentData.F_max - experimentData.F_min and current_sigma != 0:
            flag = True

        if flag and \
                step - prev_step >= 2 and \
                prev_sigma + experimentData.delta_F > 2 * current_sigma:# and \
            #experimentData.const * F * experimentData.F_degree * experimentData.t <= 3.14:
            prev_sigma = current_sigma
            prev_step = step
            experimentData.t *= experimentData.time_const
            print(step)

        if flag and prev_sigma < current_sigma:
            prev_sigma = current_sigma

        if (step) % 5 == 0:
            plt.plot([
                experimentData.F_min + i * experimentData.delta_F
                for i in range(experimentData.fields_number)
            ], experimentData.probability_distribution)  # distr each 50 steps

        if (step + 1) % 1 == 0:
            print(sum(experimentData.probability_distribution), x_peak, y_peak,
                  step, current_sigma, prev_sigma, t_sum,
                  experimentData.const * F * experimentData.t *
                  experimentData.F_degree, flag)  # checking ~ 1

        if y_peak >= 1.0 - epsilon or t_sum >= 8 * 10**(-6):
            break

    plt.plot([
        experimentData.F_min + i * experimentData.delta_F
        for i in range(experimentData.fields_number)
    ], experimentData.probability_distribution)  # final distr
    plt.show()
    #fig.savefig('distr_' + '.png', dpi=500)
    plt.close()
    print(list(sigma.keys())[-1], list(sigma.values())[-1])

    plotter.plotting_sensitivity(a_from_step, r'$N$')
    plotter.plotting_sensitivity(a_from_t_sum, r'$t_{sum}$')

    x_peak, y_peak = find_peak(experimentData)

    plotter.plotting(sigma)
Beispiel #4
0
def perform():
    experimentData = ExperimentData()
    sigma = {}
    a_from_t_sum = {}  #sensitivity
    a_from_step = {}  #sensitivity
    N = 40
    t_sum = 0
    epsilon = 10**(-5)

    for step in range(N):
        outcome = int(
            round(
                sum([
                    qubit.randbin(experimentData, experimentData.F)
                    for i in range(experimentData.num_of_repetitions)
                ]) / experimentData.num_of_repetitions))

        if bayesians_learning.P_qubit_state_on_F_i(outcome, experimentData.F_min, experimentData)\
                > bayesians_learning.P_qubit_state_on_F_i(outcome, experimentData.F_max, experimentData):
            experimentData.F_max = (experimentData.F_max +
                                    experimentData.F_min) / 2
        else:
            experimentData.F_min = (experimentData.F_max +
                                    experimentData.F_min) / 2

        t_sum += experimentData.t * experimentData.num_of_repetitions

        current_sigma = (experimentData.F_max - experimentData.F_min) / 2

        sigma[t_sum] = current_sigma

        center = (experimentData.F_max + experimentData.F_min) / 2
        a_from_t_sum[experimentData.t] = max(abs(center - experimentData.F),
                                             current_sigma) * (t_sum)**0.5
        #a_from_step[step] = current_sigma * (t_sum) ** 0.5

        experimentData.t *= experimentData.time_const

        print(step, center, current_sigma, experimentData.t * 10**6, t_sum)
        #x = np.arange(experimentData.F_min, experimentData.F_max, 0.01)

        #plt.plot(x, 1 / (current_sigma * np.sqrt(2 * np.pi)) *
        #         np.exp(- (x - center) ** 2 / (2 * current_sigma ** 2)),
        #         linewidth=2, color='r')

        if current_sigma <= epsilon or experimentData.t >= 200 * 10**(-6):
            break

    #plt.show()
    #plt.close()

    print(list(sigma.keys())[-1], list(sigma.values())[-1])

    #try:
    #    plotter.plotting_sensitivity(a_from_step, r'$N$')
    #except Exception:
    #    pass
    try:
        plotter.plotting_sensitivity(a_from_t_sum,
                                     r'$t_{coherense\_max}, \, \mu s$')
    except Exception:
        pass

    plotter.plotting(sigma)

    return a_from_t_sum