Beispiel #1
0
def get_user_dri(connection, nutrients_start_with, user_id):
    """
    ARGS
    connection      a pyMysql connection object
    user_id         id of a user from the user profile table
    RETURNS
    a series, ordered by nutrient name A-Z, containing the nutrient breakdown of a user's DRI
    """

    # Get user record
    sql = "SELECT * FROM app.user_profile WHERE id = " + str(user_id)
    user = qy.execute_query(connection=connection, sql=sql).fetchone()

    # Determine age group
    dob = user['dob']
    today = date.today()
    age = today.year - dob.year - (today.month < dob.month
                                   and today.day < dob.day)

    if age <= 3:
        age_group = 1
    elif age <= 8:
        age_group = 2
    elif age <= 13:
        age_group = 3
    elif age <= 18:
        age_group = 4
    elif age <= 30:
        age_group = 5
    elif age <= 50:
        age_group = 6
    elif age <= 70:
        age_group = 7
    else:
        age_group = 8

    # Get DRI record
    sql = "SELECT * FROM app.dri WHERE sex = %s AND age_group = %s LIMIT 1"
    cursor = qy.execute_query(connection=connection,
                              sql=sql,
                              insert_data=(user['sex'], age_group))
    series_dri = pd.Series(cursor.fetchone())
    required_cols = [
        key for key in series_dri.keys()
        if key.startswith(nutrients_start_with)
    ]
    ordered_dri = series_dri[required_cols].sort_index()

    return ordered_dri
Beispiel #2
0
def items(query=None, user=LOGGED_IN_USER, username=USER):
    """
    Given an LQL query and a library identity, return the items that match.
    """
    library = Library.objects.get()
    items = Item.objects.all()
    query_json = '[]'

    if query:
        from query import execute_query, parse_query
        parsed = parse_query(query)
        items = execute_query(items, parsed)
        # this json representation of the query that was just used to filter
        # the items will be passed back to the template as a json string
        # so the front end can render the query widget. A string representation
        # is not passed because there is no way to parse LQL in javascript (yet).
        query_json = jsonify(parsed)

    items = items.all()
    all_keys = []
    return {
        'parsed_query_json': query_json,
        'library_items': items,
        'items_count': len(items),
        'keys': all_keys,
    }
Beispiel #3
0
def render_documents(navigation):
    doc_tree_html = ""

    try:
        # Get the navigation id
        navigation_id = str(navigation.id)

        # Get projection
        projection = navigation.options['projection']

        # get filters from parents
        filters = []
        while True:
            # add filter to the list of filters
            if 'filter' in navigation.options and navigation.options['filter'] is not None:
                filters.append(navigation.options['filter'])

            # if no parent, stops the filter lookup
            if navigation.parent is None:
                break
            else:  # if parent, continue the filter lookup at the parent level
                navigation = navigation_get(navigation.parent)

        # get the documents matching the query
        documents = query.execute_query(filters, projection)

        for document in documents:
            with open(join(TEMPLATES_PATH, 'li_document.html'), 'r') as li_file:
                li_content = li_file.read()
                li_template = Template(li_content)

                branch_name = get_projection(document)
                context = {
                    'branch_id': document['_id'],
                    "parent_id": navigation_id,
                    'branch_name': branch_name,
                }

                doc_tree_html += li_template.render(Context(context))
    except Exception, e:
        with open(join(TEMPLATES_PATH, 'li_error.html'), 'r') as li_file:
            li_content = li_file.read()
            li_template = Template(li_content)

        context = {
            "error_message": e.message
        }

        doc_tree_html = li_template.render(Context(context))
Beispiel #4
0
def render_documents(navigation, template_id):
    """
    Build the documents in the navigation tree
    :param request:
        - navigation root
        - template id
    :return:
    """
    doc_tree_html = ""
    doc_and_content = []
    global number_of_doc
    number_of_doc = 0
    try:
        # Get the navigation id
        navigation_id = str(navigation.id)

        # Get projection
        projection = navigation.options['projection']
        navigation_child = navigation_get(navigation_id)

        # get filters from parents
        filters = []
        while True:
            # add filter to the list of filters
            if 'filter' in navigation.options and navigation.options[
                    'filter'] is not None:
                filters.append(navigation.options['filter'])

            # if no parent, stops the filter lookup
            if navigation.parent is None:
                break
            else:  # if parent, continue the filter lookup at the parent level
                navigation = navigation_get(navigation.parent)

        # get the documents matching the query
        documents = query.execute_query(template_id, filters, projection)

        #number_of_doc = 0
        for document in documents:
            with open(join(TEMPLATES_PATH, 'li_document.html'),
                      'r') as li_file:
                li_content = li_file.read()
                li_template = Template(li_content)

                branch_name = get_projection(document)
                context = {
                    'branch_id': document['_id'],
                    "parent_id": navigation_id,
                    'branch_name': branch_name,
                }

                doc_tree_html += li_template.render(Context(context))
                #    doc_and_content.append((doc_tree,li_template.render(Context(context))))
                global number_of_doc
                number_of_doc += 1
    except Exception, e:
        with open(join(TEMPLATES_PATH, 'li_error.html'), 'r') as li_file:
            li_content = li_file.read()
            li_template = Template(li_content)

        context = {"error_message": e.message}

        doc_tree_html = li_template.render(Context(context))
Beispiel #5
0
def get_recommended(connection,
                    return_type,
                    user_id,
                    limit=None,
                    cluster_ids=None):
    """
    ARGS
    connection              a pyMysql connection object
    return_type             either 'clusters', 'ingredients' or 'history'
    user_id                 id of a user from the user profile table
    limit                   the number of records to return from the head of the data set
    cluster_ids             list of ids
    RETURNS
    a data frame containing recommended ingredients/clusters which balance the user's DRI
    """

    # Set required nutrients
    nutrients_start_with = ('macro', 'vitamin', 'mineral')

    # Get the user nutritional history and requirements
    ordered_snapshot = sn.get_user_snapshot(
        connection=connection,
        nutrients_start_with=nutrients_start_with,
        user_id=user_id)

    ordered_dri = get_user_dri(connection=connection,
                               nutrients_start_with=nutrients_start_with,
                               user_id=user_id)

    # Get required nutrition vector
    dri_diff = get_dri_diff(snapshot=ordered_snapshot,
                            dri=ordered_dri,
                            nutrients_start_with=nutrients_start_with)

    # Check return_type is valid
    if return_type not in ['clusters', 'ingredients', 'history']:
        raise ValueError(
            "Invalid value for 'return_type'. Use 'clusters', 'ingredient' or 'history'"
        )

    # Get the data to sort
    if return_type == 'history':
        df_to_sort = sn.get_user_history(connection, user_id)
        sort_ascending = True

    else:
        if return_type == 'clusters':
            sql = "SELECT * FROM app.cluster WHERE method_id = 3"
        elif return_type == 'ingredients':
            sql = "SELECT * FROM app.ingredients_imputed WHERE 1 AND NOT cluster_id IN (2, 23, 33, 7, 35, 31, 25, 14, 15, 16, 9, 22)"
        if cluster_ids:
            sql += " AND cluster_id IN (%s)" % ','.join(
                str(cluster_id) for cluster_id in cluster_ids)

        cursor = qy.execute_query(connection=connection, sql=sql)
        df_to_sort = pd.DataFrame(cursor.fetchall())
        sort_ascending = False

    # Convert the values of the ingredients to nutrition_vector space
    for i, col in enumerate(ordered_dri.index):
        df_to_sort[col] = df_to_sort[col].mul(1 / ordered_dri[col], axis=0)

    # Sort the data
    df_sorted = sort_df_by_cosine_similarity(
        data_to_sort=df_to_sort,
        nutrition_vector=dri_diff,
        nutrients_start_with=nutrients_start_with,
        sort_ascending=sort_ascending,
        limit=limit)

    return df_sorted
Beispiel #6
0
# CLUSTER DATA
# Get centroids and cluster IDs for each row
df_centroids, cluster_ids_of_rows, headers = cluster(
    df_to_cluster=df_query_complete[filter_col],
    method=method,
    num_clusters=NUM_CLUSTERS,
    dri_user=dri_user)

# PUSH DATA TO SERVER
# Push cluster IDs of rows to server
df_query_complete["cluster_id"] = cluster_ids_of_rows

sql = "UPDATE app.ingredients_imputed SET cluster_method = %s, cluster_id = %s WHERE id = %s"
for row in df_query_complete.iterrows():
    qy.execute_query(connection=connection,
                     sql=sql,
                     insert_data=(METHOD_ID, row[1]['cluster_id'],
                                  row[1]['id']))
connection.commit()

# Push centroids to server
# Clear old data with same method ID
sql = "DELETE FROM app.cluster WHERE method_id = %s"
qy.execute_query(connection=connection, sql=sql, insert_data=(METHOD_ID, ))

# Push new data
sql = "INSERT INTO app.cluster (%s) VALUES (%s)"
columns = list(df_centroids.columns.values)
for row in df_centroids.iterrows():
    column_string = 'method_id' + ", "
    column_values = str(int(METHOD_ID)) + ", "
    for column in columns:
Beispiel #7
0
import pandas as pd
import query as qy
import numpy as np
from fancyimpute import KNN

# FETCH DATA
# Get a connection
connection = qy.get_connection(user="******", password="******")

# Get all ingredients
sql = "SELECT * FROM app.ingredients"
cursor = qy.execute_query(connection=connection, sql=sql)

# Make the data frame
df_ingredients = pd.DataFrame(cursor.fetchall())

required_columns = [
    col for col in df_ingredients
    if col.startswith(('macro', 'vitamin', 'mineral', 'sup'))
]

# IMPUTE VALUES
# Scale the values for the regressions
column_scaling = {}
for column_name in required_columns:
    column_std = np.nanstd(df_ingredients[column_name])
    column_mean = np.nanmean(df_ingredients[column_name])
    column_scaling[column_name] = {'mean': column_mean, 'std': column_std}
    df_ingredients['scaled_' + column_name] = (df_ingredients[column_name] -
                                               column_mean) / column_std