def goto_query(self): """ Go to query function """ # destory main GUI self.root.destroy() # enter query GUI query.init()
def init(schema, coll, pgConn, host, resourceUtil, workspacePath): global collections collections = coll; ensureIndexes(collections) files.init(collections, workspacePath) ckan.init(pgConn, schema) query.init(collections, host) vocab.init(schema, collections) delete.init(collections, workspacePath) workspace.init(collections, resourceUtil, workspacePath) mapreduce.init(collections, schema) push.init(collections)
import configs import query import core_stats import advanced_stats import export_list # Initialize connection to NFLBB query.init() # Process and export qb stats csv qb_list = [] config = configs.qb() core_stats.generate_position_stats(qb_list, config) advanced_stats.calc_plyr(qb_list, config['sample_size'], config['cost_baseline']) export_list.export_to_json(qb_list, 'qb') export_list.export_to_csv(qb_list, '2016_qb.csv') # Process and export rb stats csv rb_list = [] config = configs.rb() core_stats.generate_position_stats(rb_list, config) advanced_stats.calc_plyr(rb_list, config['sample_size'], config['cost_baseline']) export_list.export_to_json(rb_list, 'rb') export_list.export_to_csv(rb_list, '2016_rb.csv') # # Process and export wr stats csv wr_list = [] config = configs.wr() core_stats.generate_position_stats(wr_list, config) advanced_stats.calc_plyr(wr_list, config['sample_size'], config['cost_baseline']) export_list.export_to_json(wr_list, 'wr')