Beispiel #1
0
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None,
                options=Options(), sparse_dms=True, serial=False,
                ptrace_sel=[], calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Options
        Instance of solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    config.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full()
    else:
        config.psi0 = psi0.full()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        config.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        config.soft_reset()
        # no time dependence
        config.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                      "a list of components to keep when calculating average" +
                      " entropy of reduced density matrix in ptrace_sel. " +
                      "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Result object
    output = Result()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj

    return output
Beispiel #2
0
def rhs_generate(H, psi0, tlist, c_ops, e_ops, ntraj=500, args={}, options=Odeoptions(), solver="me", name=None):
    """
    Used to generate the Cython functions for solving the dynamics of a
    given system before using the parfor function.  
    
    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj 
        Initial state vector
    tlist : array_like 
        Times at which results are recorded.
    ntraj : int 
        Number of trajectories to run.
    c_ops : array_like 
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like 
        ``list`` or ``array`` of operators for calculating expectation values.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Odeoptions
        Instance of ODE solver options.
    solver: str
        String indicating which solver "me" or "mc"
    name: str
        Name of generated RHS
    
    """
    _reset_odeconfig()  # clear odeconfig
    # ------------------------
    # GENERATE MCSOLVER DATA
    # ------------------------
    if solver == "mc":
        odeconfig.tlist = tlist
        if isinstance(ntraj, (list, ndarray)):
            odeconfig.ntraj = sort(ntraj)[-1]
        else:
            odeconfig.ntraj = ntraj
        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _ode_checks(H, c_ops, "mc")
        h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        odeconfig.tflag = time_type
        # check for collapse operators
        if c_terms > 0:
            odeconfig.cflag = 1
        else:
            odeconfig.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options)
        os.environ["CFLAGS"] = "-w"
        import pyximport

        pyximport.install(setup_args={"include_dirs": [numpy.get_include()]})
        if odeconfig.tflag in array([1, 11]):
            code = compile(
                "from " + odeconfig.tdname + " import cyq_td_ode_rhs,col_spmv,col_expect", "<string>", "exec"
            )
            exec(code)
            odeconfig.tdfunc = cyq_td_ode_rhs
            odeconfig.colspmv = col_spmv
            odeconfig.colexpect = col_expect
        else:
            code = compile("from " + odeconfig.tdname + " import cyq_td_ode_rhs", "<string>", "exec")
            exec(code)
            odeconfig.tdfunc = cyq_td_ode_rhs
        try:
            os.remove(odeconfig.tdname + ".pyx")
        except:
            print("Error removing pyx file.  File not found.")

    # ------------------------
    # GENERATE MESOLVER STUFF
    # ------------------------
    elif solver == "me":

        odeconfig.tdname = "rhs" + str(odeconfig.cgen_num)
        cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args)
        cgen.generate(odeconfig.tdname + ".pyx")
        os.environ["CFLAGS"] = "-O3 -w"
        import pyximport

        pyximport.install(setup_args={"include_dirs": [numpy.get_include()]})
        code = compile("from " + odeconfig.tdname + " import cyq_td_ode_rhs", "<string>", "exec")
        exec(code)
        odeconfig.tdfunc = cyq_td_ode_rhs
Beispiel #3
0
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None,
                options=Odeoptions(), sparse_dms=True, serial=False,
                ptrace_sel=[], calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Odeoptions
        Instance of ODE solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Odedata
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    odeconfig.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Odeoptions
    if not odeconfig.options.num_cpus:
        odeconfig.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        odeconfig.psi0 = psi0.tidyup(options.atol).full()
    else:
        odeconfig.psi0 = psi0.full()
    odeconfig.psi0_dims = psi0.dims
    odeconfig.psi0_shape = psi0.shape
    # set general items
    odeconfig.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        odeconfig.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    odeconfig.norm_tol = options.norm_tol
    odeconfig.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        odeconfig.soft_reset()
        # no time dependence
        odeconfig.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            odeconfig.cflag = 1
        else:
            odeconfig.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, odeconfig)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                     "a list of components to keep when calculating average " +
                     "entropy of reduced density matrix in ptrace_sel. " +
                     "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Odedata object
    output = Odedata()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = odeconfig.tlist
    output.num_expect = odeconfig.e_num
    output.num_collapse = odeconfig.c_num
    output.ntraj = odeconfig.ntraj

    return output
Beispiel #4
0
def rhs_generate(H,
                 psi0,
                 tlist,
                 c_ops,
                 e_ops,
                 ntraj=500,
                 args={},
                 options=Odeoptions(),
                 solver='me',
                 name=None):
    """
    Used to generate the Cython functions for solving the dynamics of a
    given system before using the parfor function.  
    
    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj 
        Initial state vector
    tlist : array_like 
        Times at which results are recorded.
    ntraj : int 
        Number of trajectories to run.
    c_ops : array_like 
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like 
        ``list`` or ``array`` of operators for calculating expectation values.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Odeoptions
        Instance of ODE solver options.
    solver: str
        String indicating which solver "me" or "mc"
    name: str
        Name of generated RHS
    
    """
    _reset_odeconfig()  #clear odeconfig
    #------------------------
    # GENERATE MCSOLVER DATA
    #------------------------
    if solver == 'mc':
        odeconfig.tlist = tlist
        if isinstance(ntraj, (list, ndarray)):
            odeconfig.ntraj = sort(ntraj)[-1]
        else:
            odeconfig.ntraj = ntraj
        #check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _ode_checks(H, c_ops, 'mc')
        h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        #set time_type for use in multiprocessing
        odeconfig.tflag = time_type
        #check for collapse operators
        if c_terms > 0:
            odeconfig.cflag = 1
        else:
            odeconfig.cflag = 0
        #Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options)
        os.environ['CFLAGS'] = '-w'
        import pyximport
        pyximport.install(setup_args={'include_dirs': [numpy.get_include()]})
        if odeconfig.tflag in array([1, 11]):
            code = compile(
                'from ' + odeconfig.tdname +
                ' import cyq_td_ode_rhs,col_spmv,col_expect', '<string>',
                'exec')
            exec(code)
            odeconfig.tdfunc = cyq_td_ode_rhs
            odeconfig.colspmv = col_spmv
            odeconfig.colexpect = col_expect
        else:
            code = compile(
                'from ' + odeconfig.tdname + ' import cyq_td_ode_rhs',
                '<string>', 'exec')
            exec(code)
            odeconfig.tdfunc = cyq_td_ode_rhs
        try:
            os.remove(odeconfig.tdname + ".pyx")
        except:
            print("Error removing pyx file.  File not found.")

    #------------------------
    # GENERATE MESOLVER STUFF
    #------------------------
    elif solver == 'me':

        odeconfig.tdname = "rhs" + str(odeconfig.cgen_num)
        cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args)
        cgen.generate(odeconfig.tdname + ".pyx")
        os.environ['CFLAGS'] = '-O3 -w'
        import pyximport
        pyximport.install(setup_args={'include_dirs': [numpy.get_include()]})
        code = compile('from ' + odeconfig.tdname + ' import cyq_td_ode_rhs',
                       '<string>', 'exec')
        exec(code)
        odeconfig.tdfunc = cyq_td_ode_rhs