Beispiel #1
0
 def __init__(self, N, t1=None, t2=None,
              dims=None, spline_kind="step_func"):
     self.N = N
     self.pulses = []
     self.t1 = t1
     self.t2 = t2
     self.noise = []
     self.drift = Drift()
     if dims is None:
         self.dims = [2] * N
     else:
         self.dims = dims
     self.pulse_mode = "discrete"
     self.spline_kind = spline_kind
Beispiel #2
0
def TestDrift():
    """
    Test for Drift
    """
    drift = Drift()
    assert_allclose(drift.get_ideal_qobjevo(2).cte.norm(), 0)
    drift.add_drift(sigmaz(), targets=1)
    assert_allclose(
        drift.get_ideal_qobjevo(dims=[3, 2]).cte, tensor(identity(3), sigmaz()))
Beispiel #3
0
class Processor(object):
    """
    A simulator of a quantum device based on the QuTiP solver
    :func:`qutip.mesolve`.
    It is defined by the available driving Hamiltonian and
    the decoherence time for each component systems.
    The processor can simulate the evolution under the given
    control pulses. Noisy evolution is supported by
    :class:`qutip.qip.Noise` and can be added to the processor.

    Parameters
    ----------
    N: int
        The number of component systems.

    t1: list or float, optional
        Characterize the decoherence of amplitude damping for
        each qubit. A list of size `N` or a float for all qubits.

    t2: list of float, optional
        Characterize the decoherence of dephasing for
        each qubit. A list of size `N` or a float for all qubits.

    dims: list, optional
        The dimension of each component system.
        Default value is a
        qubit system of ``dim=[2,2,2,...,2]``

    spline_kind: str, optional
        Type of the coefficient interpolation. Default is "step_func"
        Note that they have different requirement for the length of `coeff'.

        -"step_func":
        The coefficient will be treated as a step function.
        E.g. ``tlist=[0,1,2]`` and ``coeff=[3,2]``, means that the coefficient
        is 3 in t=[0,1) and 2 in t=[2,3). It requires
        ``len(coeff)=len(tlist)-1`` or ``len(coeff)=len(tlist)``, but
        in the second case the last element of `coeff` has no effect.

        -"cubic": Use cubic interpolation for the coefficient. It requires
        ``len(coeff)=len(tlist)``

    Attributes
    ----------
    N: int
        The number of component systems.

    pulses: list of :class:`qutip.qip.Pulse`
        A list of control pulses of this device

    t1: float or list
        Characterize the decoherence of amplitude damping of
        each qubit.

    t2: float or list
        Characterize the decoherence of dephasing for
        each qubit.

    noise: :class:`qutip.qip.Noise`, optional
        A list of noise objects. They will be processed when creating the
        noisy :class:`qutip.QobjEvo` from the processor or run the simulation.

    drift: :class:`qutip.qip.Drift`
        A `Drift` object representing the drift Hamiltonians.

    dims: list
        The dimension of each component system.
        Default value is a
        qubit system of ``dim=[2,2,2,...,2]``

    spline_kind: str
        Type of the coefficient interpolation.
        See parameters of :class:`qutip.qip.Processor` for details.
    """
    def __init__(self,
                 N,
                 t1=None,
                 t2=None,
                 dims=None,
                 spline_kind="step_func"):
        self.N = N
        self.pulses = []
        self.t1 = t1
        self.t2 = t2
        self.noise = []
        self.drift = Drift()
        if dims is None:
            self.dims = [2] * N
        else:
            self.dims = dims
        self.pulse_mode = "discrete"
        self.spline_kind = spline_kind

    @property
    def num_qubits(self):
        return self.N

    @num_qubits.setter
    def num_qubits(self, value):
        self.N = value

    def add_drift(self, qobj, targets, cyclic_permutation=False):
        """
        Add a drift Hamiltonians. The drift Hamiltonians are intrinsic
        of the quantum system and cannot be controlled by external field.

        Parameters
        ----------
        qobj: :class:`qutip.Qobj`
            The drift Hamiltonian.
        targets: list
            The indices of the target qubits
            (or subquantum system of other dimensions).
        """
        if not isinstance(qobj, Qobj):
            raise TypeError("The drift Hamiltonian must be a qutip.Qobj.")
        if not qobj.isherm:
            raise ValueError("The drift Hamiltonian must be Hermitian.")

        num_qubits = len(qobj.dims[0])
        if targets is None:
            targets = list(range(num_qubits))
        if not isinstance(targets, list):
            targets = [targets]
        if cyclic_permutation:
            for i in range(self.N):
                temp_targets = [(t + i) % self.N for t in targets]
                self.drift.add_drift(qobj, temp_targets)
        else:
            self.drift.add_drift(qobj, targets)

    def add_control(self,
                    qobj,
                    targets=None,
                    cyclic_permutation=False,
                    label=None):
        """
        Add a control Hamiltonian to the processor. It creates a new
        :class:`qutip.qip.Pulse`
        object for the device that is turned off
        (``tlist = None``, ``coeff = None``). To activate the pulse, one
        can set its `tlist` and `coeff`.

        Parameters
        ----------
        qobj: :class:`qutip.Qobj`
            The Hamiltonian for the control pulse..

        targets: list, optional
            The indices of the target qubits
            (or subquantum system of other dimensions).

        cyclic_permutation: bool, optional
            If true, the Hamiltonian will be expanded for
            all cyclic permutation of the target qubits.

        label: str, optional
            The label (name) of the pulse
        """
        # Check validity of ctrl
        if not isinstance(qobj, Qobj):
            raise TypeError("The control Hamiltonian must be a qutip.Qobj.")
        if not qobj.isherm:
            raise ValueError("The control Hamiltonian must be Hermitian.")

        num_qubits = len(qobj.dims[0])
        if targets is None:
            targets = list(range(num_qubits))
        if not isinstance(targets, list):
            targets = [targets]
        if cyclic_permutation:
            for i in range(self.N):
                temp_targets = [(t + i) % self.N for t in targets]
                if label is not None:
                    temp_label = label + "_" + str(temp_targets)
                temp_label = label
                self.pulses.append(
                    Pulse(qobj,
                          temp_targets,
                          spline_kind=self.spline_kind,
                          label=temp_label))
        else:
            self.pulses.append(
                Pulse(qobj, targets, spline_kind=self.spline_kind,
                      label=label))

    @property
    def ctrls(self):
        """
        A list of Hamiltonians of all pulses.
        """
        result = []
        for pulse in self.pulses:
            result.append(pulse.get_ideal_qobj(self.dims))
        return result

    @property
    def coeffs(self):
        """
        A list of the coefficients for all control pulses.
        """
        if not self.pulses:
            return None
        coeffs_list = [pulse.coeff for pulse in self.pulses]
        return coeffs_list

    @coeffs.setter
    def coeffs(self, coeffs_list):
        if len(coeffs_list) != len(self.pulses):
            raise ValueError("The row number of coeffs must be same "
                             "as the number of control pulses.")
        for i, coeff in enumerate(coeffs_list):
            self.pulses[i].coeff = coeff

    @property
    def pulse_mode(self):
        if self.spline_kind == "step_func":
            return "discrete"
        elif self.spline_kind == "cubic":
            return "continuous"
        else:
            raise ValueError("Saved spline_kind not understood.")

    @pulse_mode.setter
    def pulse_mode(self, mode):
        if mode == "discrete":
            spline_kind = "step_func"
        elif mode == "continuous":
            spline_kind = "cubic"
        else:
            raise ValueError(
                "Pulse mode must be either discrete or continuous.")

        self.spline_kind = spline_kind
        for pulse in self.pulses:
            pulse.spline_kind = spline_kind

    def get_full_tlist(self):
        """
        Return the full tlist of the ideal pulses.
        If different pulses have different time steps,
        it will collect all the time steps in a sorted array.

        Returns
        -------
        full_tlist: array-like 1d
            The full time sequence for the ideal evolution.
        """
        all_tlists = [
            pulse.tlist for pulse in self.pulses if pulse.tlist is not None
        ]
        if not all_tlists:
            raise ValueError("No valid pulse found, tlist is empty.")
        return np.unique(np.sort(np.hstack(all_tlists)))

    def get_full_coeffs(self, full_tlist=None):
        """
        Return the full coefficients in a 2d matrix form.
        Each row corresponds to one pulse. If the `tlist` are
        different for different pulses, the length of each row
        will be same as the `full_tlist` (see method
        `get_full_tlist`). Interpolation is used for
        adding the missing coefficient according to `spline_kind`.

        Returns
        -------
        coeffs: array-like 2d
            The coefficients for all ideal pulses.
        """
        # TODO add tests
        self._is_pulses_valid()
        if not self.pulses:
            return np.array((0, 0), dtype=float)
        if full_tlist is None:
            full_tlist = self.get_full_tlist()
        coeffs_list = []
        for pulse in self.pulses:
            if not isinstance(pulse.coeff, (bool, np.ndarray)):
                raise ValueError("get_full_coeffs only works for "
                                 "NumPy array or bool coeff.")
            if isinstance(pulse.coeff, bool):
                if pulse.coeff:
                    coeffs_list.append(np.ones(full_tlist))
                else:
                    coeffs_list.append(np.zeros(full_tlist))
            if self.spline_kind == "step_func":
                arg = {"_step_func_coeff": True}
                coeffs_list.append(
                    _fill_coeff(pulse.coeff, pulse.tlist, full_tlist, arg))
            elif self.spline_kind == "cubic":
                coeffs_list.append(
                    _fill_coeff(pulse.coeff, pulse.tlist, full_tlist, {}))
            else:
                raise ValueError("Unknown spline kind.")
        return np.array(coeffs_list)

    def set_all_tlist(self, tlist):
        """
        Set the same `tlist` for all the pulses.

        Parameters
        ----------
        tlist: array-like, optional
            A list of time at which the time-dependent coefficients are
            applied. See :class:`qutip.qip.Pulse` for detailed information`
        """
        for pulse in self.pulses:
            pulse.tlist = tlist

    def add_pulse(self, pulse):
        """
        Add a new pulse to the device.

        Parameters
        ----------
        pulse: :class:`qutip.qip.Pulse`
            `Pulse` object to be added.
        """
        if isinstance(pulse, Pulse):
            if pulse.spline_kind is None:
                pulse.spline_kind = self.spline_kind
            self.pulses.append(pulse)
        else:
            raise ValueError("Invalid input, pulse must be a Pulse object")

    def remove_pulse(self, indices=None, label=None):
        """
        Remove the control pulse with given indices.

        Parameters
        ----------
        indices: int or list of int
            The indices of the control Hamiltonians to be removed.
        label: str
            The label of the pulse
        """
        if indices is not None:
            if not isinstance(indices, Iterable):
                indices = [indices]
            indices.sort(reverse=True)
            for ind in indices:
                del self.pulses[ind]
        else:
            for ind, pulse in enumerate(self.pulses):
                if pulse.label == label:
                    del self.pulses[ind]

    def _is_pulses_valid(self):
        """
        Check if the pulses are in the correct shape.

        Returns: bool
            If they are valid or not
        """
        for i, pulse in enumerate(self.pulses):
            if pulse.coeff is None or isinstance(pulse.coeff, bool):
                # constant pulse
                continue
            if pulse.tlist is None:
                raise ValueError(
                    "Pulse id={} is invalid. "
                    "Please define a tlist for the pulse.".format(i))
            if pulse.tlist is not None and pulse.coeff is None:
                raise ValueError(
                    "Pulse id={} is invalid. "
                    "Please define a coeff for the pulse.".format(i))
            coeff_len = len(pulse.coeff)
            tlist_len = len(pulse.tlist)
            if pulse.spline_kind == "step_func":
                if coeff_len == tlist_len - 1 or coeff_len == tlist_len:
                    pass
                else:
                    raise ValueError(
                        "The length of tlist and coeff of the pulse "
                        "labelled {} is invalid. "
                        "It's either len(tlist)=len(coeff) or "
                        "len(tlist)-1=len(coeff) for coefficients "
                        "as step function".format(i))
            else:
                if coeff_len == tlist_len:
                    pass
                else:
                    raise ValueError(
                        "The length of tlist and coeff of the pulse "
                        "labelled {} is invalid. "
                        "It should be either len(tlist)=len(coeff)".format(i))
        return True

    def add_noise(self, noise):
        """
        Add a noise object to the processor

        Parameters
        ----------
        noise: :class:`qutip.qip.Noise`
            The noise object defined outside the processor
        """
        if isinstance(noise, Noise):
            self.noise.append(noise)
        else:
            raise TypeError("Input is not a Noise object.")

    def save_coeff(self, file_name, inctime=True):
        """
        Save a file with the control amplitudes in each timeslot.

        Parameters
        ----------
        file_name: string
            Name of the file.

        inctime: bool, optional
            True if the time list should be included in the first column.
        """
        self._is_pulses_valid()
        coeffs = np.array(self.get_full_coeffs())
        if inctime:
            shp = coeffs.T.shape
            data = np.empty((shp[0], shp[1] + 1), dtype=np.float64)
            data[:, 0] = self.get_full_tlist()
            data[:, 1:] = coeffs.T
        else:
            data = coeffs.T

        np.savetxt(file_name, data, delimiter='\t', fmt='%1.16f')

    def read_coeff(self, file_name, inctime=True):
        """
        Read the control amplitudes matrix and time list
        saved in the file by `save_amp`.

        Parameters
        ----------
        file_name: string
            Name of the file.

        inctime: bool, optional
            True if the time list in included in the first column.

        Returns
        -------
        tlist: array_like
            The time list read from the file.

        coeffs: array_like
            The pulse matrix read from the file.
        """
        data = np.loadtxt(file_name, delimiter='\t')
        if not inctime:
            self.coeffs = data.T
            return self.coeffs
        else:
            tlist = data[:, 0]
            self.set_all_tlist(tlist)
            self.coeffs = data[:, 1:].T
            return self.get_full_tlist, self.coeffs

    def get_noisy_pulses(self, device_noise=False, drift=False):
        """
        It takes the pulses defined in the `Processor` and
        adds noise according to `Processor.noise`. It does not modify the
        pulses saved in `Processor.pulses` but returns a new list.
        The length of the new list of noisy pulses might be longer
        because of drift Hamiltonian and device noise. They will be
        added to the end of the pulses list.

        Parameters
        ----------
        device_noise: bool, optional
            If true, include pulse independent noise such as single qubit
            Relaxation. Default is False.
        drift: bool, optional
            If true, include drift Hamiltonians. Default is False.

        Returns
        -------
        noisy_pulses: list of :class"`qutip.qip.Pulse`/:class:`qutip.qip.Drift`
            A list of noisy pulses.
        """
        pulses = deepcopy(self.pulses)
        noisy_pulses = process_noise(pulses,
                                     self.noise,
                                     self.dims,
                                     t1=self.t1,
                                     t2=self.t2,
                                     device_noise=device_noise)
        if drift:
            noisy_pulses += [self.drift]
        return noisy_pulses

    def get_qobjevo(self, args=None, noisy=False):
        """
        Create a :class:`qutip.QobjEvo` representation of the evolution.
        It calls the method `get_noisy_pulses` and create the `QobjEvo`
        from it.

        Parameters
        ----------
        args: dict, optional
            Arguments for :class:`qutip.QobjEvo`
        noisy: bool, optional
            If noise are included. Default is False.

        Returns
        -------
        qobjevo: :class:`qutip.QobjEvo`
            The :class:`qutip.QobjEvo` representation of the unitary evolution.
        c_ops: list of :class:`qutip.QobjEvo`
            A list of lindblad operators is also returned. if ``noisy==Flase``,
            it is always an empty list.
        """
        # TODO test it for non array-like coeff
        # check validity
        self._is_pulses_valid()

        if args is None:
            args = {}
        else:
            args = args
        # set step function

        if not noisy:
            dynamics = self.pulses
        else:
            dynamics = self.get_noisy_pulses(device_noise=True, drift=True)

        qu_list = []
        c_ops = []
        for pulse in dynamics:
            if noisy:
                qu, new_c_ops = pulse.get_noisy_qobjevo(dims=self.dims)
                c_ops += new_c_ops
            else:
                qu = pulse.get_ideal_qobjevo(dims=self.dims)
            qu_list.append(qu)

        final_qu = _merge_qobjevo(qu_list)
        final_qu.args.update(args)

        if noisy:
            return final_qu, c_ops
        else:
            return final_qu, []

    def run_analytically(self, init_state=None, qc=None):
        """
        Simulate the state evolution under the given `qutip.QubitCircuit`
        with matrice exponentiation. It will calculate the propagator
        with matrix exponentiation and return a list of :class:`qutip.Qobj`.
        This method won't include noise or collpase.

        Parameters
        ----------
        qc: :class:`qutip.qip.QubitCircuit`, optional
            Takes the quantum circuit to be implemented. If not given, use
            the quantum circuit saved in the processor by ``load_circuit``.

        init_state: :class:`qutip.Qobj`, optional
            The initial state of the qubits in the register.

        Returns
        -------
        evo_result: :class:`qutip.Result`
            An instance of the class
            :class:`qutip.Result` will be returned.
        """
        if init_state is not None:
            U_list = [init_state]
        else:
            U_list = []
        tlist = self.get_full_tlist()
        # TODO replace this by get_complete_coeff
        coeffs = self.get_full_coeffs()
        for n in range(len(tlist) - 1):
            H = sum(
                [coeffs[m, n] * self.ctrls[m] for m in range(len(self.ctrls))])
            dt = tlist[n + 1] - tlist[n]
            U = (-1j * H * dt).expm()
            U = self.eliminate_auxillary_modes(U)
            U_list.append(U)

        try:  # correct_global_phase are defined for ModelProcessor
            if self.correct_global_phase and self.global_phase != 0:
                U_list.append(globalphase(self.global_phase, N=self.N))
        except AttributeError:
            pass

        return U_list

    def run(self, qc=None):
        """
        Calculate the propagator of the evolution by matrix exponentiation.
        This method won't include noise or collpase.

        Parameters
        ----------
        qc: :class:`qutip.qip.QubitCircuit`, optional
            Takes the quantum circuit to be implemented. If not given, use
            the quantum circuit saved in the processor by `load_circuit`.

        Returns
        -------
        U_list: list
            The propagator matrix obtained from the physical implementation.
        """
        if qc:
            self.load_circuit(qc)
        return self.run_analytically(qc=qc, init_state=None)

    def run_state(self,
                  init_state=None,
                  analytical=False,
                  states=None,
                  noisy=True,
                  solver="mesolve",
                  **kwargs):
        """
        If `analytical` is False, use :func:`qutip.mesolve` to
        calculate the time of the state evolution
        and return the result. Other arguments of mesolve can be
        given as keyword arguments.

        If `analytical` is True, calculate the propagator
        with matrix exponentiation and return a list of matrices.
        Noise will be neglected in this option.

        Parameters
        ----------
        init_state: Qobj
            Initial density matrix or state vector (ket).

        analytical: bool
            If True, calculate the evolution with matrices exponentiation.

        states: :class:`qutip.Qobj`, optional
            Old API, same as init_state.

        solver: str
            "mesolve" or "mcsolve"

        **kwargs
            Keyword arguments for the qutip solver.

        Returns
        -------
        evo_result: :class:`qutip.Result`
            If ``analytical`` is False,  an instance of the class
            :class:`qutip.Result` will be returned.

            If ``analytical`` is True, a list of matrices representation
            is returned.
        """
        if states is not None:
            warnings.warn(
                "states will be deprecated and replaced by init_state",
                DeprecationWarning)
        if init_state is None and states is None:
            raise ValueError("Qubit state not defined.")
        elif init_state is None:
            # just to keep the old parameters `states`,
            # it is replaced by init_state
            init_state = states
        if analytical:
            if kwargs or self.noise:
                raise warnings.warn("Analytical matrices exponentiation"
                                    "does not process noise or"
                                    "any keyword arguments.")
            return self.run_analytically(init_state=init_state)

        # kwargs can not contain H or tlist
        if "H" in kwargs or "tlist" in kwargs:
            raise ValueError(
                "`H` and `tlist` are already specified by the processor "
                "and can not be given as a keyword argument")

        # construct qobjevo for unitary evolution
        if "args" in kwargs:
            noisy_qobjevo, sys_c_ops = self.get_qobjevo(args=kwargs["args"],
                                                        noisy=noisy)
        else:
            noisy_qobjevo, sys_c_ops = self.get_qobjevo(noisy=noisy)

        # add collpase operators into kwargs
        if "c_ops" in kwargs:
            if isinstance(kwargs["c_ops"], (Qobj, QobjEvo)):
                kwargs["c_ops"] += [kwargs["c_ops"]] + sys_c_ops
            else:
                kwargs["c_ops"] += sys_c_ops
        else:
            kwargs["c_ops"] = sys_c_ops

        # choose solver:
        if solver == "mesolve":
            solver = mesolve
        elif solver == "mcsolve":
            solver = mcsolve

        evo_result = solver(H=noisy_qobjevo,
                            rho0=init_state,
                            tlist=noisy_qobjevo.tlist,
                            **kwargs)
        return evo_result

    def load_circuit(self, qc):
        """
        Translate an :class:`qutip.qip.QubitCircuit` to its
        corresponding Hamiltonians. (Defined in subclasses)
        """
        raise NotImplementedError("Use the function in the sub-class")

    def eliminate_auxillary_modes(self, U):
        """
        Eliminate the auxillary modes like the cavity modes in cqed.
        (Defined in subclasses)
        """
        return U

    def get_operators_labels(self):
        """
        Get the labels for each Hamiltonian.
        It is used in the method``plot_pulses``.
        It is a 2-d nested list, in the plot,
        a different color will be used for each sublist.
        """
        label_list = []
        for pulse in self.pulses:
            label_list.append(pulse.label)
        return [label_list]

    def plot_pulses(self,
                    title=None,
                    figsize=(12, 6),
                    dpi=None,
                    show_axis=False,
                    rescale_pulse_coeffs=True,
                    num_steps=1000):
        """
        Plot the ideal pulse coefficients.

        Parameters
        ----------
        title: str, optional
            Title for the plot.

        figsize: tuple, optional
            The size of the figure.

        dpi: int, optional
            The dpi of the figure.

        show_axis: bool, optional
            If the axis are shown.

        rescale_pulse_coeffs: bool, optional
            Rescale the hight of each pulses.

        num_steps: int, optional
            Number of time steps in the plot.

        Returns
        -------
        fig: matplotlib.figure.Figure
            The `Figure` object for the plot.

        ax: matplotlib.axes._subplots.AxesSubplot
            The axes for the plot.

        Notes
        -----
        ``plot_pulses`` only works for array_like coefficients
        """
        import matplotlib.pyplot as plt
        import matplotlib.gridspec as gridspec
        color_list = plt.rcParams['axes.prop_cycle'].by_key()['color']

        # create a axis for each pulse
        fig = plt.figure(figsize=figsize, dpi=dpi)
        grids = gridspec.GridSpec(len(self.pulses), 1)
        grids.update(wspace=0., hspace=0.)

        tlist = np.linspace(0., self.get_full_tlist()[-1], num_steps)
        dt = tlist[1] - tlist[0]

        # make sure coeffs start and end with zero, for ax.fill
        tlist = np.hstack(([-dt * 1.e-20], tlist, [tlist[-1] + dt * 1.e-20]))
        coeffs = []
        for pulse in self.pulses:
            coeffs.append(_pulse_interpolate(pulse, tlist))

        pulse_ind = 0
        axis = []
        for i, label_group in enumerate(self.get_operators_labels()):
            for j, label in enumerate(label_group):
                grid = grids[pulse_ind]
                ax = plt.subplot(grid)
                axis.append(ax)
                ax.fill(tlist, coeffs[pulse_ind], color_list[i], alpha=0.7)
                ax.plot(tlist, coeffs[pulse_ind], color_list[i])
                if rescale_pulse_coeffs:
                    ymax = np.max(np.abs(coeffs[pulse_ind])) * 1.1
                else:
                    ymax = np.max(np.abs(coeffs)) * 1.1
                if ymax != 0.:
                    ax.set_ylim((-ymax, ymax))

                # disable frame and ticks
                ax.set_xticks([])
                ax.spines['top'].set_visible(False)
                ax.spines['right'].set_visible(False)
                ax.spines['bottom'].set_visible(False)
                ax.spines['left'].set_visible(False)
                ax.set_yticks([])
                ax.set_ylabel(label, rotation=0)
                pulse_ind += 1
                if i == 0 and j == 0 and title is not None:
                    ax.set_title(title)
        fig.tight_layout()
        return fig, axis