def test_tanh(self):
     """ tanh函数显示.
     """
     print('{} test_tanh {}'.format('-'*15, '-'*15))
     data_x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
     data_y = data_x.tanh()
     show_x_y_axis(data_x.detach().numpy(), data_y.detach().numpy(), title='tanh')  # 直接弹出图片
Beispiel #2
0
 def test_show_x_y_axis(self):
     """ 显示x、y坐标系.
     """
     print('{} test_show_x_y_axis {}'.format('-' * 15, '-' * 15))
     data_x = np.arange(0, 10)
     data_y = 2 * data_x + 5
     show_x_y_axis(data_x, data_y)  # 直接弹出图片
 def test_sigmoid(self):
     """ sigmoid函数显示.
     """
     print('{} test_sigmoid {}'.format('-'*15, '-'*15))
     data_x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
     data_y = data_x.sigmoid()
     show_x_y_axis(data_x.detach().numpy(), data_y.detach().numpy(), title='sigmoid')  # 直接弹出图片
 def test_ReLU(self):
     """ ReLU函数显示.
     """
     print('{} test_ReLU {}'.format('-'*15, '-'*15))
     data_x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
     data_y = data_x.relu()
     show_x_y_axis(data_x.detach().numpy(), data_y.detach().numpy(), title='ReLU')  # 直接弹出图片
 def test_tanh_grad(self):
     """ tanh函数梯度显示.
     """
     print('{} test_tanh_grad {}'.format('-'*15, '-'*15))
     data_x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
     data_x.tanh().sum().backward()
     data_y = data_x.grad
     show_x_y_axis(data_x.detach().numpy(), data_y.detach().numpy(), title='tanh grad')  # 直接弹出图片
Beispiel #6
0
 def test_saddle_point(self):
     """ 鞍点.
     """
     print('{} test_saddle_point {}'.format('-' * 15, '-' * 15))
     data_x = np.arange(-2.0, 2.0, 0.1)
     data_y = data_x**3
     annotates = [{
         'text': 'saddle point',
         'xy': (0, -0.2),
         'xytext': (-0.52, -5.0),
         'arrowstyle': '->'
     }]
     show_x_y_axis(data_x,
                   data_y,
                   title='saddle point',
                   annotates=annotates)  # 直接弹出图片
Beispiel #7
0
 def test_local_minimum(self):
     """ 局部最小值显示.
     """
     print('{} test_local_minimum {}'.format('-' * 15, '-' * 15))
     data_x = np.arange(-1.0, 2.0, 0.1)
     data_y = data_x * np.cos(np.pi * data_x)
     annotates = [{
         'text': 'local minimum',
         'xy': (-0.3, -0.25),
         'xytext': (-0.7, -1.0),
         'arrowstyle': '->'
     }, {
         'text': 'global minimum',
         'xy': (1.1, -0.95),
         'xytext': (0.6, 0.8),
         'arrowstyle': '->'
     }]
     show_x_y_axis(data_x,
                   data_y,
                   title='local minimum',
                   annotates=annotates)  # 直接弹出图片