def experiment(variant):

    imsize = variant['imsize']

    env = ImageForkReacher2dEnv(variant["arm_goal_distance_cost_coeff"],
                                variant["arm_object_distance_cost_coeff"],
                                [imsize, imsize, 3],
                                goal_object_distance_cost_coeff=variant[
                                    "goal_object_distance_cost_coeff"],
                                ctrl_cost_coeff=variant["ctrl_cost_coeff"])

    partial_obs_size = env.obs_dim - imsize * imsize * 3
    print("partial dim was " + str(partial_obs_size))
    env = NormalizedBoxEnv(env)

    obs_dim = int(np.prod(env.observation_space.shape))
    action_dim = int(np.prod(env.action_space.shape))

    qf1 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    qf2 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    vf = CNN(input_width=imsize,
             input_height=imsize,
             output_size=1,
             input_channels=3,
             **variant['cnn_params'])

    policy = TanhCNNGaussianPolicy(input_width=imsize,
                                   input_height=imsize,
                                   output_size=action_dim,
                                   input_channels=3,
                                   **variant['cnn_params'])

    algorithm = SACTrainer(env=env,
                           policy=policy,
                           qf1=qf1,
                           qf2=qf2,
                           vf=vf,
                           **variant['algo_params'])

    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #2
0
def relabeling_tsac_experiment(variant):
    if 'presample_goals' in variant:
        raise NotImplementedError()
    if 'env_id' in variant:
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env = variant['env_class'](**variant['env_kwargs'])
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])
    max_path_length = variant['max_path_length']
    eval_policy = MakeDeterministic(policy)
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])
    # if variant.get("save_video", False):
    #     rollout_function = rf.create_rollout_function(
    #         rf.multitask_rollout,
    #         max_path_length=algorithm.max_path_length,
    #         observation_key=algorithm.observation_key,
    #         desired_goal_key=algorithm.desired_goal_key,
    #     )
    #     video_func = get_video_save_func(
    #         rollout_function,
    #         env,
    #         policy,
    #         variant,
    #     )
    #     algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
def _disentangled_her_twin_sac_experiment_v2(
        max_path_length,
        encoder_kwargs,
        disentangled_qf_kwargs,
        qf_kwargs,
        twin_sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        evaluation_goal_sampling_mode,
        exploration_goal_sampling_mode,
        algo_kwargs,
        save_video=True,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        observation_key='state_observation',
        desired_goal_key='state_desired_goal',
        achieved_goal_key='state_achieved_goal',
        # Video parameters
        latent_dim=2,
        save_video_kwargs=None,
        **kwargs
):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm

    if save_video_kwargs is None:
        save_video_kwargs = {}

    if env_kwargs is None:
        env_kwargs = {}
    assert env_id or env_class

    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        train_env = gym.make(env_id)
        eval_env = gym.make(env_id)
    else:
        eval_env = env_class(**env_kwargs)
        train_env = env_class(**env_kwargs)

    obs_dim = train_env.observation_space.spaces[observation_key].low.size
    goal_dim = train_env.observation_space.spaces[desired_goal_key].low.size
    action_dim = train_env.action_space.low.size

    encoder = FlattenMlp(
        input_size=goal_dim,
        output_size=latent_dim,
        **encoder_kwargs
    )

    qf1 = DisentangledMlpQf(
        goal_processor=encoder,
        preprocess_obs_dim=obs_dim,
        action_dim=action_dim,
        qf_kwargs=qf_kwargs,
        **disentangled_qf_kwargs
    )
    qf2 = DisentangledMlpQf(
        goal_processor=encoder,
        preprocess_obs_dim=obs_dim,
        action_dim=action_dim,
        qf_kwargs=qf_kwargs,
        **disentangled_qf_kwargs
    )
    target_qf1 = DisentangledMlpQf(
        goal_processor=Detach(encoder),
        preprocess_obs_dim=obs_dim,
        action_dim=action_dim,
        qf_kwargs=qf_kwargs,
        **disentangled_qf_kwargs
    )
    target_qf2 = DisentangledMlpQf(
        goal_processor=Detach(encoder),
        preprocess_obs_dim=obs_dim,
        action_dim=action_dim,
        qf_kwargs=qf_kwargs,
        **disentangled_qf_kwargs
    )

    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        **policy_kwargs
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **replay_buffer_kwargs
    )
    sac_trainer = SACTrainer(
        env=train_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **twin_sac_trainer_kwargs
    )
    trainer = HERTrainer(sac_trainer)

    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=evaluation_goal_sampling_mode,
    )
    expl_path_collector = GoalConditionedPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=exploration_goal_sampling_mode,
    )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs,
    )
    algorithm.to(ptu.device)

    if save_video:
        save_vf_heatmap = save_video_kwargs.get('save_vf_heatmap', True)

        def v_function(obs):
            action = policy.get_actions(obs)
            obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
            return qf1(obs, action, return_individual_q_vals=True)
        add_heatmap = partial(add_heatmap_imgs_to_o_dict, v_function=v_function)
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            full_o_postprocess_func=add_heatmap if save_vf_heatmap else None,
        )

        img_keys = ['v_vals'] + [
            'v_vals_dim_{}'.format(dim) for dim
            in range(latent_dim)
        ]
        eval_video_func = get_save_video_function(
            rollout_function,
            eval_env,
            MakeDeterministic(policy),
            tag="eval",
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            **save_video_kwargs
        )
        train_video_func = get_save_video_function(
            rollout_function,
            train_env,
            policy,
            tag="train",
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            **save_video_kwargs
        )
        decoder = FlattenMlp(
            input_size=obs_dim,
            output_size=obs_dim,
            hidden_sizes=[128, 128],
        )
        decoder.to(ptu.device)

        # algorithm.post_train_funcs.append(train_decoder(variant, encoder, decoder))
        # algorithm.post_train_funcs.append(plot_encoder_function(variant, encoder))
        # algorithm.post_train_funcs.append(plot_buffer_function(
            # save_video_period, 'state_achieved_goal'))
        # algorithm.post_train_funcs.append(plot_buffer_function(
            # save_video_period, 'state_desired_goal'))
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)



    algorithm.train()
Beispiel #4
0
def experiment(variant):
    import multiworld.envs.pygame
    env = gym.make('Point2DEnv-ImageFixedGoal-v0')
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = PretrainedCNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf_cnn = PretrainedCNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
    else:
        qf1_cnn = PretrainedCNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            qf1_cnn, Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            PretrainedCNN(**cnn_params), Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(PretrainedCNN(**cnn_params),
                                        Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(PretrainedCNN(**cnn_params),
                                        Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
    action_dim = int(np.prod(env.action_space.shape))
    policy_cnn = PretrainedCNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(nn.Sequential(policy_cnn, Flatten()),
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #5
0
def _pointmass_fixed_goal_experiment(vae_latent_size,
                                     replay_buffer_size,
                                     cnn_kwargs,
                                     vae_kwargs,
                                     policy_kwargs,
                                     qf_kwargs,
                                     e2e_trainer_kwargs,
                                     sac_trainer_kwargs,
                                     algorithm_kwargs,
                                     eval_path_collector_kwargs=None,
                                     expl_path_collector_kwargs=None,
                                     **kwargs):
    if expl_path_collector_kwargs is None:
        expl_path_collector_kwargs = {}
    if eval_path_collector_kwargs is None:
        eval_path_collector_kwargs = {}
    from multiworld.core.image_env import ImageEnv
    from multiworld.envs.pygame.point2d import Point2DEnv
    from multiworld.core.flat_goal_env import FlatGoalEnv
    env = Point2DEnv(
        images_are_rgb=True,
        render_onscreen=False,
        show_goal=False,
        ball_radius=2,
        render_size=48,
        fixed_goal=(0, 0),
    )
    env = ImageEnv(env, imsize=env.render_size, transpose=True, normalize=True)
    env = FlatGoalEnv(env)  #, append_goal_to_obs=True)
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    vae = ConvVAE(
        representation_size=vae_latent_size,
        input_channels=3,
        imsize=input_width,
        decoder_output_activation=nn.Sigmoid(),
        # decoder_distribution='gaussian_identity_variance',
        **vae_kwargs)
    encoder = Vae2Encoder(vae)

    def make_cnn():
        return networks.CNN(input_width=input_width,
                            input_height=input_height,
                            input_channels=3,
                            output_conv_channels=True,
                            output_size=None,
                            **cnn_kwargs)

    def make_qf():
        return networks.MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            encoder,
            networks.Flatten(),
        ),
                                              output_size=1,
                                              input_size=action_dim +
                                              vae_latent_size,
                                              **qf_kwargs)

    qf1 = make_qf()
    qf2 = make_qf()
    target_qf1 = make_qf()
    target_qf2 = make_qf()
    action_dim = int(np.prod(env.action_space.shape))
    policy_cnn = make_cnn()
    policy = TanhGaussianPolicyAdapter(
        nn.Sequential(policy_cnn, networks.Flatten()),
        policy_cnn.conv_output_flat_size, action_dim, **policy_kwargs)
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(eval_env, eval_policy,
                                           **eval_path_collector_kwargs)
    replay_buffer = EnvReplayBuffer(
        replay_buffer_size,
        expl_env,
    )
    vae_trainer = VAETrainer(vae)
    sac_trainer = SACTrainer(env=eval_env,
                             policy=policy,
                             qf1=qf1,
                             qf2=qf2,
                             target_qf1=target_qf1,
                             target_qf2=target_qf2,
                             **sac_trainer_kwargs)
    trainer = End2EndSACTrainer(
        sac_trainer=sac_trainer,
        vae_trainer=vae_trainer,
        **e2e_trainer_kwargs,
    )
    expl_path_collector = MdpPathCollector(expl_env, policy,
                                           **expl_path_collector_kwargs)
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **algorithm_kwargs)
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    env = RobosuiteStateWrapperEnv(wrapped_env_id=variant['env_id'],
                                   **variant['env_kwargs'])  #

    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size

    hidden_sizes = variant['hidden_sizes']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=hidden_sizes,
    )

    es = OUStrategy(action_space=env.action_space,
                    max_sigma=variant['exploration_noise'],
                    min_sigma=variant['exploration_noise'])

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        env,
        eval_policy,
    )
    expl_path_collector = MdpPathCollector(
        env,
        exploration_policy,
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        env,
    )
    trainer = SACTrainer(env=env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=variant['max_path_length'],
        batch_size=variant['batch_size'],
        num_epochs=variant['num_epochs'],
        num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
        num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
        num_trains_per_train_loop=variant['num_trains_per_train_loop'],
        min_num_steps_before_training=variant['min_num_steps_before_training'],
    )
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=variant['randomize_env'],
                              observation_mode=variant['obs'],
                              reward_type='shaped',
                              transpose_image=True)

    if variant['obs'] == 'pixels_debug':
        robot_state_dims = 11
    elif variant['obs'] == 'pixels':
        robot_state_dims = 4
    else:
        raise NotImplementedError

    expl_env = FlatEnv(expl_env,
                       use_robot_state=variant['use_robot_state'],
                       robot_state_dims=robot_state_dims)
    eval_env = expl_env

    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
    )
    if variant['use_robot_state']:
        cnn_params.update(
            added_fc_input_size=robot_state_dims,
            output_conv_channels=False,
            hidden_sizes=[400, 400],
            output_size=200,
        )
    else:
        cnn_params.update(
            added_fc_input_size=0,
            output_conv_channels=True,
            output_size=None,
        )
    qf_cnn = CNN(**cnn_params)

    if variant['use_robot_state']:
        qf_obs_processor = qf_cnn
    else:
        qf_obs_processor = nn.Sequential(
            qf_cnn,
            Flatten(),
        )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1

    if variant['use_robot_state']:
        qf_kwargs['input_size'] = (action_dim + qf_cnn.output_size)
    else:
        qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)

    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    if variant['use_robot_state']:
        target_qf_obs_processor = target_qf_cnn
    else:
        target_qf_obs_processor = nn.Sequential(
            target_qf_cnn,
            Flatten(),
        )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1

    if variant['use_robot_state']:
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.output_size)
    else:
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    if variant['use_robot_state']:
        policy_obs_processor = policy_cnn
    else:
        policy_obs_processor = nn.Sequential(
            policy_cnn,
            Flatten(),
        )

    if variant['use_robot_state']:
        policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                           policy_cnn.output_size, action_dim,
                                           **variant['policy_kwargs'])
    else:
        policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                           policy_cnn.conv_output_flat_size,
                                           action_dim,
                                           **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        raise NotImplementedError

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    expl_env = PointmassBaseEnv()
    eval_env = expl_env

    action_dim = int(np.prod(eval_env.action_space.shape))
    state_dim = 3

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = action_dim + state_dim
    qf1 = MlpQf(**qf_kwargs)
    qf2 = MlpQf(**qf_kwargs)

    target_qf_kwargs = copy.deepcopy(qf_kwargs)
    target_qf1 = MlpQf(**target_qf_kwargs)
    target_qf2 = MlpQf(**target_qf_kwargs)

    policy_kwargs = copy.deepcopy(variant['policy_kwargs'])
    policy_kwargs['action_dim'] = action_dim
    policy_kwargs['obs_dim'] = state_dim
    policy = TanhGaussianPolicy(**policy_kwargs)

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    import multiworld
    multiworld.register_all_envs()
    env = gym.make('Image48SawyerReachXYEnv-v1')
    observation_key = 'image_proprio_observation'
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        added_fc_input_size=3,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf_cnn = CNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(target_qf_cnn, Flatten()),
            output_size=1,
            input_size=action_dim + target_qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs'])
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            qf1_cnn, Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(obs_processor=nn.Sequential(
            CNN(**cnn_params), Flatten()),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(CNN(**cnn_params), Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=nn.Sequential(CNN(**cnn_params), Flatten()),
            output_size=1,
            input_size=action_dim + cnn_output_dim,
            **variant['qf_kwargs'])
    policy_cnn = CNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(nn.Sequential(policy_cnn, Flatten()),
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
        **variant['replay_buffer_kwargs'],
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = ObsDictPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = ObsDictStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #10
0
def active_representation_learning_experiment(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import ObsDictReplayBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.arl.active_representation_learning_algorithm import \
        ActiveRepresentationLearningAlgorithm
    from railrl.torch.arl.representation_wrappers import RepresentationWrappedEnv
    from multiworld.core.image_env import ImageEnv
    from railrl.samplers.data_collector import MdpPathCollector

    preprocess_rl_variant(variant)

    model_class = variant.get('model_class')
    model_kwargs = variant.get('model_kwargs')

    model = model_class(**model_kwargs)
    model.representation_size = 4
    model.imsize = 48
    variant["vae_path"] = model

    reward_params = variant.get("reward_params", dict())
    init_camera = variant.get("init_camera", None)
    env = variant["env_class"](**variant['env_kwargs'])
    image_env = ImageEnv(
        env,
        variant.get('imsize'),
        init_camera=init_camera,
        transpose=True,
        normalize=True,
    )
    env = RepresentationWrappedEnv(
        image_env,
        model,
    )

    uniform_dataset_fn = variant.get('generate_uniform_dataset_fn', None)
    if uniform_dataset_fn:
        uniform_dataset = uniform_dataset_fn(
            **variant['generate_uniform_dataset_kwargs'])
    else:
        uniform_dataset = None

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = env.observation_space.spaces[observation_key].low.size
    action_dim = env.action_space.low.size
    hidden_sizes = variant.get('hidden_sizes', [400, 300])
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=hidden_sizes,
    )

    vae = env.vae

    replay_buffer = ObsDictReplayBuffer(env=env,
                                        **variant['replay_buffer_kwargs'])

    model_trainer_class = variant.get('model_trainer_class')
    model_trainer_kwargs = variant.get('model_trainer_kwargs')
    model_trainer = model_trainer_class(
        model,
        **model_trainer_kwargs,
    )
    # vae_trainer = ConvVAETrainer(
    #     env.vae,
    #     **variant['online_vae_trainer_kwargs']
    # )
    assert 'vae_training_schedule' not in variant, "Just put it in algo_kwargs"
    max_path_length = variant['max_path_length']

    trainer = SACTrainer(env=env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    # trainer = HERTrainer(trainer)
    eval_path_collector = MdpPathCollector(
        env,
        MakeDeterministic(policy),
        # max_path_length,
        # observation_key=observation_key,
        # desired_goal_key=desired_goal_key,
    )
    expl_path_collector = MdpPathCollector(
        env,
        policy,
        # max_path_length,
        # observation_key=observation_key,
        # desired_goal_key=desired_goal_key,
    )

    algorithm = ActiveRepresentationLearningAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        model=model,
        model_trainer=model_trainer,
        uniform_dataset=uniform_dataset,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    algorithm.to(ptu.device)
    vae.to(ptu.device)
    algorithm.train()
Beispiel #11
0
def experiment(variant):

    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=variant['randomize_env'],
                              observation_mode=variant['obs'],
                              reward_type='shaped',
                              transpose_image=True)

    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    observation_key = 'image'
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])

    with open(variant['buffer'], 'rb') as f:
        replay_buffer = pickle.load(f)

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])

    expl_path_collector = ObsDictStepCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        **variant['expl_path_collector_kwargs'])
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        q_learning_alg=False,  # should be false for SAC
        batch_rl=variant['batch_rl'],
        **variant['algo_kwargs'])

    video_func = VideoSaveFunctionBullet(variant)
    # dump_buffer_func = BufferSaveFunction(variant)

    algorithm.post_train_funcs.append(video_func)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #12
0
def experiment(variant):

    expl_env = roboverse.make(variant['env'], gui=False, randomize=True,
                              observation_mode='state', reward_type='shaped',
                              transpose_image=True)
    eval_env = expl_env

    action_dim = int(np.prod(eval_env.action_space.shape))
    state_dim = 11

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = action_dim + state_dim
    qf1 = MlpQf(**qf_kwargs)
    qf2 = MlpQf(**qf_kwargs)

    target_qf_kwargs = copy.deepcopy(qf_kwargs)
    target_qf1 = MlpQf(**target_qf_kwargs)
    target_qf2 = MlpQf(**target_qf_kwargs)

    policy_kwargs = copy.deepcopy(variant['policy_kwargs'])
    policy_kwargs['action_dim'] = action_dim
    policy_kwargs['obs_dim'] = state_dim
    policy = TanhGaussianPolicy(**policy_kwargs)

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
        **variant['eval_path_collector_kwargs']
    )

    with open(variant['buffer'], 'rb') as f:
        replay_buffer = pickle.load(f)

    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )

    expl_path_collector = MdpPathCollector(
        expl_env,
        policy,
        **variant['expl_path_collector_kwargs']
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        q_learning_alg=False,  # should be false for SAC
        batch_rl=variant['batch_rl'],
        **variant['algo_kwargs']
    )
    dump_buffer_func = BufferSaveFunction(variant)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):

    env_params = dict(
        block_random=0.3,
        camera_random=0,
        simple_observations=False,
        continuous=True,
        remove_height_hack=True,
        render_mode="DIRECT",
        # render_mode="GUI",
        num_objects=5,
        max_num_training_models=900,
        target=False,
        test=False,
    )
    expl_env = FlatEnv(KukaGraspingProceduralEnv(**env_params))
    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    observation_key = 'image'
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = ObsDictPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = ObsDictStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        raise NotImplementedError

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    # dump_buffer_func = BufferSaveFunction(variant)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()
def experiment(variant):
    import gym
    from multiworld.envs.mujoco import register_custom_envs
    from multiworld.core.flat_goal_env import FlatGoalEnv

    register_custom_envs()
    expl_env = FlatGoalEnv(
        gym.make(variant['env_id']),
        obs_keys=['state_observation'],
        goal_keys=['xy_desired_goal'],
        append_goal_to_obs=False,
    )
    eval_env = FlatGoalEnv(
        gym.make(variant['env_id']),
        obs_keys=['state_observation'],
        goal_keys=['xy_desired_goal'],
        append_goal_to_obs=False,
    )

    obs_dim = expl_env.observation_space.low.size
    action_dim = eval_env.action_space.low.size

    M = variant['layer_size']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=[M, M],
    )
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )
    if variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            max_path_length=variant['max_path_length'],
            batch_size=variant['batch_size'],
            num_epochs=variant['num_epochs'],
            num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
            num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
            num_trains_per_train_loop=variant['num_trains_per_train_loop'],
            min_num_steps_before_training=variant['min_num_steps_before_training'],
        )
    else:
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            max_path_length=variant['max_path_length'],
            batch_size=variant['batch_size'],
            num_epochs=variant['num_epochs'],
            num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
            num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
            num_trains_per_train_loop=variant['num_trains_per_train_loop'],
            min_num_steps_before_training=variant['min_num_steps_before_training'],
        )
    algorithm.to(ptu.device)
    algorithm.train()
def her_sac_experiment(
        max_path_length,
        qf_kwargs,
        twin_sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        evaluation_goal_sampling_mode,
        exploration_goal_sampling_mode,
        algo_kwargs,
        save_video=True,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        observation_key='state_observation',
        desired_goal_key='state_desired_goal',
        achieved_goal_key='state_achieved_goal',
        # Video parameters
        save_video_kwargs=None,
        **kwargs
):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    if not save_video_kwargs:
        save_video_kwargs = {}

    if env_kwargs is None:
        env_kwargs = {}

    assert env_id or env_class
    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        train_env = gym.make(env_id)
        eval_env = gym.make(env_id)
    else:
        eval_env = env_class(**env_kwargs)
        train_env = env_class(**env_kwargs)

    obs_dim = (
            train_env.observation_space.spaces[observation_key].low.size
            + train_env.observation_space.spaces[desired_goal_key].low.size
    )
    action_dim = train_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **qf_kwargs
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **qf_kwargs
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **qf_kwargs
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **qf_kwargs
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        **policy_kwargs
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **replay_buffer_kwargs
    )
    trainer = SACTrainer(
        env=train_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **twin_sac_trainer_kwargs
    )
    trainer = HERTrainer(trainer)

    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=evaluation_goal_sampling_mode,
    )
    expl_path_collector = GoalConditionedPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=exploration_goal_sampling_mode,
    )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs
    )
    algorithm.to(ptu.device)

    if save_video:
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            return_dict_obs=True,
        )
        eval_video_func = get_save_video_function(
            rollout_function,
            eval_env,
            MakeDeterministic(policy),
            tag="eval",
            **save_video_kwargs
        )
        train_video_func = get_save_video_function(
            rollout_function,
            train_env,
            policy,
            tag="train",
            **save_video_kwargs
        )

        # algorithm.post_train_funcs.append(plot_buffer_function(
            # save_video_period, 'state_achieved_goal'))
        # algorithm.post_train_funcs.append(plot_buffer_function(
            # save_video_period, 'state_desired_goal'))
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)

    algorithm.train()
def experiment(variant):
    # from softlearning.environments.gym import register_image_reach
    # register_image_reach()
    # env = gym.envs.make(
    #     'Pusher2d-ImageReach-v0',
    # )
    from softlearning.environments.gym.mujoco.image_pusher_2d import (
        ImageForkReacher2dEnv)

    env_kwargs = {
        'image_shape': (32, 32, 3),
        'arm_goal_distance_cost_coeff': 1.0,
        'arm_object_distance_cost_coeff': 0.0,
    }

    eval_env = ImageForkReacher2dEnv(**env_kwargs)
    expl_env = ImageForkReacher2dEnv(**env_kwargs)

    input_width, input_height, input_channels = eval_env.image_shape
    image_dim = input_width * input_height * input_channels

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=input_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )
    non_image_dim = int(np.prod(eval_env.observation_space.shape)) - image_dim
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf_obs_processor = nn.Sequential(
            Split(qf_cnn, identity, image_dim),
            FlattenEach(),
            Concat(),
        )

        qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
        qf_kwargs['obs_processor'] = qf_obs_processor
        qf_kwargs['output_size'] = 1
        qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size +
                                   non_image_dim)
        qf1 = MlpQfWithObsProcessor(**qf_kwargs)
        qf2 = MlpQfWithObsProcessor(**qf_kwargs)

        target_qf_cnn = CNN(**cnn_params)
        target_qf_obs_processor = nn.Sequential(
            Split(target_qf_cnn, identity, image_dim),
            FlattenEach(),
            Concat(),
        )
        target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
        target_qf_kwargs['obs_processor'] = target_qf_obs_processor
        target_qf_kwargs['output_size'] = 1
        target_qf_kwargs['input_size'] = (action_dim +
                                          target_qf_cnn.conv_output_flat_size +
                                          non_image_dim)
        target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
        target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(obs_processor=qf1_cnn,
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        qf2 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                    output_size=1,
                                    input_size=action_dim + cnn_output_dim,
                                    **variant['qf_kwargs'])
        target_qf1 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                           output_size=1,
                                           input_size=action_dim +
                                           cnn_output_dim,
                                           **variant['qf_kwargs'])
        target_qf2 = MlpQfWithObsProcessor(obs_processor=CNN(**cnn_params),
                                           output_size=1,
                                           input_size=action_dim +
                                           cnn_output_dim,
                                           **variant['qf_kwargs'])
    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        Split(policy_cnn, identity, image_dim),
        FlattenEach(),
        Concat(),
    )
    policy = TanhGaussianPolicyAdapter(
        policy_obs_processor, policy_cnn.conv_output_flat_size + non_image_dim,
        action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #17
0
def experiment(variant):
    import gym
    from multiworld.envs.mujoco import register_custom_envs

    register_custom_envs()
    observation_key = 'state_observation'
    desired_goal_key = 'xy_desired_goal'
    expl_env = gym.make(variant['env_id'])
    eval_env = gym.make(variant['env_id'])

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size

    M = variant['layer_size']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        hidden_sizes=[M, M],
    )
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    if variant['collection_mode'] == 'online':
        expl_step_collector = GoalConditionedStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_step_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        expl_path_collector = GoalConditionedPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #18
0
def experiment(variant):
    from multiworld.envs.mujoco import register_goal_example_envs
    register_goal_example_envs()

    eval_env = gym.make('Image48SawyerPushForwardEnv-v0')
    expl_env = gym.make('Image48SawyerPushForwardEnv-v0')
    # Hack for now
    eval_env.wrapped_env.transpose = True
    expl_env.wrapped_env.transpose = True
    # More hacks, use a dense reward instead
    eval_env.wrapped_env.wrapped_env.reward_type = 'puck_distance'
    expl_env.wrapped_env.wrapped_env.reward_type = 'puck_distance'

    img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )
    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)
    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #19
0
def goal_conditioned_sac_experiment(
    max_path_length,
    qf_kwargs,
    sac_trainer_kwargs,
    replay_buffer_kwargs,
    policy_kwargs,
    algo_kwargs,
    env_id=None,
    env_class=None,
    env_kwargs=None,
    observation_key='state_observation',
    desired_goal_key='state_desired_goal',
    achieved_goal_key='state_achieved_goal',
    contextual_env_kwargs=None,
    evaluation_goal_sampling_mode=None,
    exploration_goal_sampling_mode=None,
    # Video parameters
    save_video=True,
    save_video_kwargs=None,
):
    if contextual_env_kwargs is None:
        contextual_env_kwargs = {}
    if not save_video_kwargs:
        save_video_kwargs = {}

    def contextual_env_distrib_and_reward(env_id, env_class, env_kwargs,
                                          goal_sampling_mode):
        env = get_gym_env(env_id, env_class=env_class, env_kwargs=env_kwargs)
        env.goal_sampling_mode = goal_sampling_mode
        goal_distribution = GoalDistributionFromMultitaskEnv(
            env,
            desired_goal_key=desired_goal_key,
        )
        reward_fn = ContextualRewardFnFromMultitaskEnv(
            env=env,
            desired_goal_key=desired_goal_key,
            achieved_goal_key=achieved_goal_key,
        )
        env = ContextualEnv(
            env,
            context_distribution=goal_distribution,
            reward_fn=reward_fn,
            observation_key=observation_key,
            **contextual_env_kwargs,
        )
        return env, goal_distribution, reward_fn

    expl_env, expl_context_distrib, expl_reward = contextual_env_distrib_and_reward(
        env_id, env_class, env_kwargs, exploration_goal_sampling_mode)
    eval_env, eval_context_distrib, eval_reward = contextual_env_distrib_and_reward(
        env_id, env_class, env_kwargs, evaluation_goal_sampling_mode)
    context_key = desired_goal_key

    obs_dim = (expl_env.observation_space.spaces[observation_key].low.size +
               expl_env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = expl_env.action_space.low.size

    def create_qf():
        return FlattenMlp(input_size=obs_dim + action_dim,
                          output_size=1,
                          **qf_kwargs)

    qf1 = create_qf()
    qf2 = create_qf()
    target_qf1 = create_qf()
    target_qf2 = create_qf()

    policy = TanhGaussianPolicy(obs_dim=obs_dim,
                                action_dim=action_dim,
                                **policy_kwargs)

    ob_keys_to_save = [
        observation_key,
        desired_goal_key,
        achieved_goal_key,
    ]

    def concat_context_to_obs(batch):
        obs = batch['observations']
        next_obs = batch['next_observations']
        context = batch['contexts']
        batch['observations'] = np.concatenate([obs, context], axis=1)
        batch['next_observations'] = np.concatenate([next_obs, context],
                                                    axis=1)
        return batch

    replay_buffer = ContextualRelabelingReplayBuffer(
        env=eval_env,
        context_key=desired_goal_key,
        context_distribution=eval_context_distrib,
        sample_context_from_obs_dict_fn=SelectKeyFn(achieved_goal_key),
        ob_keys_to_save=ob_keys_to_save,
        reward_fn=eval_reward,
        post_process_batch_fn=concat_context_to_obs,
        **replay_buffer_kwargs)
    trainer = SACTrainer(env=expl_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **sac_trainer_kwargs)

    eval_path_collector = ContextualPathCollector(
        eval_env,
        MakeDeterministic(policy),
        observation_key=observation_key,
        context_key=context_key,
    )
    expl_path_collector = ContextualPathCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        context_key=context_key,
    )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs)
    algorithm.to(ptu.device)

    if save_video:
        rollout_function = partial(
            rf.contextual_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            context_key=context_key,
        )
        eval_video_func = get_save_video_function(rollout_function,
                                                  eval_env,
                                                  MakeDeterministic(policy),
                                                  tag="eval",
                                                  **save_video_kwargs)
        train_video_func = get_save_video_function(rollout_function,
                                                   expl_env,
                                                   policy,
                                                   tag="train",
                                                   **save_video_kwargs)

        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)

    algorithm.train()
def experiment(variant):

    ptu.set_gpu_mode(True, 0)

    from softlearning.environments.gym import register_image_reach
    register_image_reach()
    env = gym.make('Pusher2d-ImageReach-v0', arm_goal_distance_cost_coeff=1.0, arm_object_distance_cost_coeff=0.0)

    #import ipdb; ipdb.set_trace()
    input_width, input_height = env.image_shape

    action_dim = int(np.prod(env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=input_width,
        input_height=input_height,
        input_channels=3,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )
    if variant['shared_qf_conv']:
        qf_cnn = CNN(**cnn_params)
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf_cnn = CNN(**cnn_params)
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=target_qf_cnn,
            output_size=1,
            input_size=action_dim+qf_cnn.conv_output_flat_size,
            **variant['qf_kwargs']
        )
    else:
        qf1_cnn = CNN(**cnn_params)
        cnn_output_dim = qf1_cnn.conv_output_flat_size
        qf1 = MlpQfWithObsProcessor(
            obs_processor=qf1_cnn,
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf1 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
        target_qf2 = MlpQfWithObsProcessor(
            obs_processor=CNN(**cnn_params),
            output_size=1,
            input_size=action_dim+cnn_output_dim,
            **variant['qf_kwargs']
        )
    action_dim = int(np.prod(env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy = TanhGaussianPolicyAdapter(
        policy_cnn,
        policy_cnn.conv_output_flat_size,
        action_dim,
    )
    eval_env = expl_env = env

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
        **variant['eval_path_collector_kwargs']
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    elif variant['collection_mode'] == 'parallel':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            **variant['expl_path_collector_kwargs']
        )
        algorithm = TorchParallelRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs']
        )
    algorithm.to(ptu.device)
    algorithm.train()
def twin_sac_experiment(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    from railrl.torch.sac.policies import MakeDeterministic
    from railrl.torch.sac.sac import SACTrainer

    preprocess_rl_variant(variant)
    env = get_envs(variant)
    max_path_length = variant['max_path_length']
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size +
               env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])

    trainer = SACTrainer(env=env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    if variant.get("do_state_exp", False):
        eval_path_collector = GoalConditionedPathCollector(
            env,
            MakeDeterministic(policy),
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        expl_path_collector = GoalConditionedPathCollector(
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
    else:
        eval_path_collector = VAEWrappedEnvPathCollector(
            variant['evaluation_goal_sampling_mode'],
            env,
            MakeDeterministic(policy),
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        expl_path_collector = VAEWrappedEnvPathCollector(
            variant['exploration_goal_sampling_mode'],
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)
    algorithm.train()
Beispiel #22
0
def grill_her_twin_sac_experiment_online_vae(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.online_vae_replay_buffer import \
        OnlineVaeRelabelingBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.vae.vae_trainer import ConvVAETrainer

    grill_preprocess_variant(variant)
    env = get_envs(variant)

    uniform_dataset_fn = variant.get('generate_uniform_dataset_fn', None)
    if uniform_dataset_fn:
        uniform_dataset = uniform_dataset_fn(
            **variant['generate_uniform_dataset_kwargs'])
    else:
        uniform_dataset = None

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size +
               env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = env.action_space.low.size
    hidden_sizes = variant.get('hidden_sizes', [400, 300])
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=hidden_sizes,
    )

    vae = env.vae

    replay_buffer_class = variant.get("replay_buffer_class",
                                      OnlineVaeRelabelingBuffer)
    replay_buffer = replay_buffer_class(vae=env.vae,
                                        env=env,
                                        observation_key=observation_key,
                                        desired_goal_key=desired_goal_key,
                                        achieved_goal_key=achieved_goal_key,
                                        **variant['replay_buffer_kwargs'])

    vae_trainer_class = variant.get("vae_trainer_class", ConvVAETrainer)
    vae_trainer = vae_trainer_class(env.vae,
                                    **variant['online_vae_trainer_kwargs'])
    assert 'vae_training_schedule' not in variant, "Just put it in algo_kwargs"
    max_path_length = variant['max_path_length']

    trainer = SACTrainer(env=env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = VAEWrappedEnvPathCollector(
        env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=variant['evaluation_goal_sampling_mode'],
    )
    expl_path_collector = VAEWrappedEnvPathCollector(
        env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=variant['exploration_goal_sampling_mode'],
    )

    algorithm = OnlineVaeAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        vae=vae,
        vae_trainer=vae_trainer,
        uniform_dataset=uniform_dataset,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)
    if variant['custom_goal_sampler'] == 'replay_buffer':
        env.custom_goal_sampler = replay_buffer.sample_buffer_goals

    algorithm.to(ptu.device)
    vae.to(ptu.device)
    algorithm.train()
Beispiel #23
0
def _disentangled_grill_her_twin_sac_experiment(
        max_path_length,
        encoder_kwargs,
        disentangled_qf_kwargs,
        qf_kwargs,
        twin_sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        vae_evaluation_goal_sampling_mode,
        vae_exploration_goal_sampling_mode,
        base_env_evaluation_goal_sampling_mode,
        base_env_exploration_goal_sampling_mode,
        algo_kwargs,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        observation_key='state_observation',
        desired_goal_key='state_desired_goal',
        achieved_goal_key='state_achieved_goal',
        latent_dim=2,
        vae_wrapped_env_kwargs=None,
        vae_path=None,
        vae_n_vae_training_kwargs=None,
        vectorized=False,
        save_video=True,
        save_video_kwargs=None,
        have_no_disentangled_encoder=False,
        **kwargs):
    if env_kwargs is None:
        env_kwargs = {}
    assert env_id or env_class

    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        train_env = gym.make(env_id)
        eval_env = gym.make(env_id)
    else:
        eval_env = env_class(**env_kwargs)
        train_env = env_class(**env_kwargs)

    train_env.goal_sampling_mode = base_env_exploration_goal_sampling_mode
    eval_env.goal_sampling_mode = base_env_evaluation_goal_sampling_mode

    if vae_path:
        vae = load_local_or_remote_file(vae_path)
    else:
        vae = get_n_train_vae(latent_dim=latent_dim,
                              env=eval_env,
                              **vae_n_vae_training_kwargs)

    train_env = VAEWrappedEnv(train_env,
                              vae,
                              imsize=train_env.imsize,
                              **vae_wrapped_env_kwargs)
    eval_env = VAEWrappedEnv(eval_env,
                             vae,
                             imsize=train_env.imsize,
                             **vae_wrapped_env_kwargs)

    obs_dim = train_env.observation_space.spaces[observation_key].low.size
    goal_dim = train_env.observation_space.spaces[desired_goal_key].low.size
    action_dim = train_env.action_space.low.size

    encoder = FlattenMlp(input_size=obs_dim,
                         output_size=latent_dim,
                         **encoder_kwargs)

    def make_qf():
        if have_no_disentangled_encoder:
            return FlattenMlp(
                input_size=obs_dim + goal_dim + action_dim,
                output_size=1,
                **qf_kwargs,
            )
        else:
            return DisentangledMlpQf(goal_processor=encoder,
                                     preprocess_obs_dim=obs_dim,
                                     action_dim=action_dim,
                                     qf_kwargs=qf_kwargs,
                                     vectorized=vectorized,
                                     **disentangled_qf_kwargs)

    qf1 = make_qf()
    qf2 = make_qf()
    target_qf1 = make_qf()
    target_qf2 = make_qf()

    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **policy_kwargs)

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        vectorized=vectorized,
        **replay_buffer_kwargs)
    sac_trainer = SACTrainer(env=train_env,
                             policy=policy,
                             qf1=qf1,
                             qf2=qf2,
                             target_qf1=target_qf1,
                             target_qf2=target_qf2,
                             **twin_sac_trainer_kwargs)
    trainer = HERTrainer(sac_trainer)

    eval_path_collector = VAEWrappedEnvPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=vae_evaluation_goal_sampling_mode,
    )
    expl_path_collector = VAEWrappedEnvPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=vae_exploration_goal_sampling_mode,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs,
    )
    algorithm.to(ptu.device)

    if save_video:
        save_vf_heatmap = save_video_kwargs.get('save_vf_heatmap', True)

        if have_no_disentangled_encoder:

            def v_function(obs):
                action = policy.get_actions(obs)
                obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
                return qf1(obs, action)

            add_heatmap = partial(add_heatmap_img_to_o_dict,
                                  v_function=v_function)
        else:

            def v_function(obs):
                action = policy.get_actions(obs)
                obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
                return qf1(obs, action, return_individual_q_vals=True)

            add_heatmap = partial(
                add_heatmap_imgs_to_o_dict,
                v_function=v_function,
                vectorized=vectorized,
            )
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            full_o_postprocess_func=add_heatmap if save_vf_heatmap else None,
        )
        img_keys = ['v_vals'] + [
            'v_vals_dim_{}'.format(dim) for dim in range(latent_dim)
        ]
        eval_video_func = get_save_video_function(rollout_function,
                                                  eval_env,
                                                  MakeDeterministic(policy),
                                                  get_extra_imgs=partial(
                                                      get_extra_imgs,
                                                      img_keys=img_keys),
                                                  tag="eval",
                                                  **save_video_kwargs)
        train_video_func = get_save_video_function(rollout_function,
                                                   train_env,
                                                   policy,
                                                   get_extra_imgs=partial(
                                                       get_extra_imgs,
                                                       img_keys=img_keys),
                                                   tag="train",
                                                   **save_video_kwargs)
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)
    algorithm.train()
def experiment(variant):

    expl_env = FlatEnv(PointmassBaseEnv(observation_mode='pixels',
                                        transpose_image=True),
                       use_robot_state=False)

    eval_env = expl_env

    img_width, img_height = (48, 48)
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=4,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )
    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)
    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env, policy, **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #25
0
def experiment(variant):
    eval_env = gym.make('FetchReach-v1')
    expl_env = gym.make('FetchReach-v1')

    observation_key = 'observation'
    desired_goal_key = 'desired_goal'

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])
    eval_policy = MakeDeterministic(policy)
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
def _use_disentangled_encoder_distance(
        max_path_length,
        encoder_kwargs,
        disentangled_qf_kwargs,
        qf_kwargs,
        sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        evaluation_goal_sampling_mode,
        exploration_goal_sampling_mode,
        algo_kwargs,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        encoder_key_prefix='encoder',
        encoder_input_prefix='state',
        latent_dim=2,
        reward_mode=EncoderWrappedEnv.ENCODER_DISTANCE_REWARD,
        # Video parameters
        save_video=True,
        save_video_kwargs=None,
        save_vf_heatmap=True,
        **kwargs
):
    if save_video_kwargs is None:
        save_video_kwargs = {}
    if env_kwargs is None:
        env_kwargs = {}
    assert env_id or env_class
    vectorized = (
            reward_mode == EncoderWrappedEnv.VECTORIZED_ENCODER_DISTANCE_REWARD
    )

    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        raw_train_env = gym.make(env_id)
        raw_eval_env = gym.make(env_id)
    else:
        raw_eval_env = env_class(**env_kwargs)
        raw_train_env = env_class(**env_kwargs)

    raw_train_env.goal_sampling_mode = exploration_goal_sampling_mode
    raw_eval_env.goal_sampling_mode = evaluation_goal_sampling_mode

    raw_obs_dim = (
            raw_train_env.observation_space.spaces['state_observation'].low.size
    )
    action_dim = raw_train_env.action_space.low.size

    encoder = FlattenMlp(
        input_size=raw_obs_dim,
        output_size=latent_dim,
        **encoder_kwargs
    )
    encoder = Identity()
    encoder.input_size = raw_obs_dim
    encoder.output_size = raw_obs_dim

    np_encoder = EncoderFromMlp(encoder)
    train_env = EncoderWrappedEnv(
        raw_train_env, np_encoder, encoder_input_prefix,
        key_prefix=encoder_key_prefix,
        reward_mode=reward_mode,
    )
    eval_env = EncoderWrappedEnv(
        raw_eval_env, np_encoder, encoder_input_prefix,
        key_prefix=encoder_key_prefix,
        reward_mode=reward_mode,
    )
    observation_key = '{}_observation'.format(encoder_key_prefix)
    desired_goal_key = '{}_desired_goal'.format(encoder_key_prefix)
    achieved_goal_key = '{}_achieved_goal'.format(encoder_key_prefix)
    obs_dim = train_env.observation_space.spaces[observation_key].low.size
    goal_dim = train_env.observation_space.spaces[desired_goal_key].low.size

    def make_qf():
        return DisentangledMlpQf(
            goal_processor=encoder,
            preprocess_obs_dim=obs_dim,
            action_dim=action_dim,
            qf_kwargs=qf_kwargs,
            vectorized=vectorized,
            **disentangled_qf_kwargs
        )
    qf1 = make_qf()
    qf2 = make_qf()
    target_qf1 = make_qf()
    target_qf2 = make_qf()

    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        **policy_kwargs
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        vectorized=vectorized,
        **replay_buffer_kwargs
    )
    sac_trainer = SACTrainer(
        env=train_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **sac_trainer_kwargs
    )
    trainer = HERTrainer(sac_trainer)

    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode='env',
    )
    expl_path_collector = GoalConditionedPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode='env',
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs
    )
    algorithm.to(ptu.device)

    if save_video:
        def v_function(obs):
            action = policy.get_actions(obs)
            obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
            return qf1(obs, action, return_individual_q_vals=True)

        add_heatmap = partial(
            add_heatmap_imgs_to_o_dict,
            v_function=v_function,
            vectorized=vectorized,
        )
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            full_o_postprocess_func=add_heatmap if save_vf_heatmap else None,
        )
        img_keys = ['v_vals'] + [
            'v_vals_dim_{}'.format(dim) for dim
            in range(latent_dim)
        ]
        eval_video_func = get_save_video_function(
            rollout_function,
            eval_env,
            MakeDeterministic(policy),
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            tag="eval",
            **save_video_kwargs
        )
        train_video_func = get_save_video_function(
            rollout_function,
            train_env,
            policy,
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            tag="train",
            **save_video_kwargs
        )
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)
    algorithm.train()
Beispiel #27
0
def experiment(variant):
    env_params = ENV_PARAMS[variant['env']]
    variant.update(env_params)

    expl_env = NormalizedBoxEnv(variant['env_class']())
    eval_env = NormalizedBoxEnv(variant['env_class']())
    obs_dim = expl_env.observation_space.low.size
    action_dim = eval_env.action_space.low.size

    M = variant['layer_size']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=[M, M],
    )
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env,
        eval_policy,
    )
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **variant['trainer_kwargs']
    )
    if variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            max_path_length=variant['max_path_length'],
            batch_size=variant['batch_size'],
            num_epochs=variant['num_epochs'],
            num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
            num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
            num_trains_per_train_loop=variant['num_trains_per_train_loop'],
            min_num_steps_before_training=variant['min_num_steps_before_training'],
        )
    else:
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            max_path_length=variant['max_path_length'],
            batch_size=variant['batch_size'],
            num_epochs=variant['num_epochs'],
            num_eval_steps_per_epoch=variant['num_eval_steps_per_epoch'],
            num_expl_steps_per_train_loop=variant['num_expl_steps_per_train_loop'],
            num_trains_per_train_loop=variant['num_trains_per_train_loop'],
            min_num_steps_before_training=variant['min_num_steps_before_training'],
        )
    algorithm.to(ptu.device)
    algorithm.train()
Beispiel #28
0
def experiment(variant):

    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=True,
                              observation_mode='state',
                              reward_type='shaped',
                              transpose_image=True)
    eval_env = expl_env

    action_dim = int(np.prod(eval_env.action_space.shape))
    state_dim = eval_env.observation_space.shape[0]

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = action_dim + state_dim
    qf1 = MlpQf(**qf_kwargs)
    qf2 = MlpQf(**qf_kwargs)

    target_qf_kwargs = copy.deepcopy(qf_kwargs)
    target_qf1 = MlpQf(**target_qf_kwargs)
    target_qf2 = MlpQf(**target_qf_kwargs)

    policy_kwargs = copy.deepcopy(variant['policy_kwargs'])
    policy_kwargs['action_dim'] = action_dim
    policy_kwargs['obs_dim'] = state_dim
    policy = TanhGaussianPolicy(**policy_kwargs)

    eval_policy = MakeDeterministic(policy)
    eval_path_collector = MdpPathCollector(
        eval_env, eval_policy, **variant['eval_path_collector_kwargs'])
    replay_buffer = EnvReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])

    if variant['scripted_policy']:
        if 'V3-v0' in variant['env']:
            scripted_policy = GraspV3ScriptedPolicy(
                expl_env, noise_std=variant['scripted_noise_std'])
        elif 'V4-v0' in variant['env']:
            scripted_policy = GraspV4ScriptedPolicy(
                expl_env, noise_std=variant['scripted_noise_std'])
        elif 'V5-v0' in variant['env']:
            scripted_policy = GraspV5ScriptedPolicy(
                expl_env, noise_std=variant['scripted_noise_std'])
        else:
            raise NotImplementedError
    else:
        scripted_policy = None

    if variant['collection_mode'] == 'batch':
        expl_path_collector = MdpPathCollector(
            expl_env,
            policy,
            optional_expl_policy=scripted_policy,
            optional_expl_probability_init=0.5,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    elif variant['collection_mode'] == 'online':
        expl_path_collector = MdpStepCollector(
            expl_env,
            policy,
            optional_expl_policy=scripted_policy,
            optional_expl_probability=0.9,
            **variant['expl_path_collector_kwargs'])
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])

    dump_buffer_func = BufferSaveFunction(variant)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()