def filter_frames(self, data): t1 = time.time() data = data[0] axis = self.axis positions = self.positions print positions weights = data[self.peakindex] widths = np.ones_like(positions)*self.parameters["width_guess"] p = [] p.extend(weights) p.extend(widths) curvetype = self.getFitFunction(str(self.parameters['peak_shape'])) print "HI" [x1, infodict1] = ral_nlls.solve( p, self._resid, self.dfunc, params=(curvetype, data, axis, positions), options = { 'print_level': 3, 'maxit': 100, 'model': 1, 'nlls_method': 4, 'stop_g_absolute': 1e-7, 'stop_g_relative': 1e-7, 'relative_tr_radius': 0, 'initial_radius_scale': 1.0, 'maximum_radius': 1e8, 'eta_successful':1e-8, 'eta_success_but_reduce': 1e-8, 'eta_very_successful':0.9, 'eta_too_successful': 2.0, 'radius_increase': 2.0, 'radius_reduce': 0.5, 'radius_reduce_max': 1/16, 'tr_update_strategy': 2, 'hybrid_switch': 1e-0, 'scale': 0, 'scale_max':1e11, 'scale_min':1e-11, 'more_sorensen_maxits': 500, 'more_sorensen_shift': 1e-13, 'more_sorensen_tol': 1e-3, 'hybrid_tol': 2.0, 'hybrid_switch_its': 1 }) logging.debug("done one") params = x1[0] if np.isnan(params).any(): logging.debug('Nans were detected here') params = np.zeros(len(params)) weights, widths, areas = self.getAreas(curvetype, axis, positions, params) residuals = self._resid(params, curvetype, data, axis, positions) # all fitting routines will output the same format. # nchannels long, with 3 elements. Each can be a subarray. t2 = time.time() logging.debug("Simple fit iteration took: %s ms", str((t2-t1)*1e3)) return [weights, widths, areas, residuals]
def fit(self): """ Run problem with RALFit. """ self._popt = ral_nlls.solve(self.initial_params, self.cost_func.eval_r, self.jacobian.eval, options=self._options)[0] self._status = 0 if self._popt is not None else 1
def fit(self): """ Run problem with RALFit. """ self.success = False self._popt = ral_nlls.solve(self.initial_params, self._prediction_error, self._jac, options=self._options)[0] self.success = (self._popt is not None)
# Where H_i = [ 0 t_i x_1 e^(x_2 t_i) ] # [ t_i x_1 e^(x_2 t_i) x_1 t_i^2 e^(x_2 t_i) ] def Hr(x, r, t, y): x1 = x[0] x2 = x[1] Hr = numpy.zeros((2, 2)) Hr[0, 0] = 0.0 # H_11 v = t * numpy.exp(x2 * t) Hr[1, 0] = numpy.dot(r, v) # H_21 Hr[1, 1] = numpy.dot(r, (t * x1) * v) # H_22 return Hr # Data to be fitted t = numpy.array([1.0, 2.0, 4.0, 5.0, 8.0]) y = numpy.array([3.0, 4.0, 6.0, 11.0, 20.0]) # Starting guess x0 = numpy.array([2.5, 0.25]) # Call fitting routine (x, inform) = ral_nlls.solve(x0, r, J, Hr=Hr, params=(t, y)) # Print result print("Found a local optimum at x = [ {0:.8f} {1:.8f} ]".format(x[0], x[1])) print("RALFit converged in {:d} iterations".format(inform["iter"])) print("The cost function is {:f} at the minimum, and ||J^Tr||={:e}".format( inform["obj"], inform["norm_g"]))