def compute_a(a, num_terms, mid): """ Compute the rank-2 tensor a. a is a num_terms x num_terms matrix. a -- the destination matrix num_terms -- the number of terms to take into account when computing a. """ mid = num_terms / 2 for i in xrange(num_terms): for j in xrange(mid, num_terms): a[i][j] = random.gaussian(0,1) + 1j* random.gaussian(0,1) a[2*mid-i][2*mid-j] = a[i][j].conjugate
def z(self): return gaussian(self.mean, self.sigma)
Compute the rank-2 tensor a. a is a num_terms x num_terms matrix. a -- the destination matrix num_terms -- the number of terms to take into account when computing a. """ mid = num_terms / 2 for i in xrange(num_terms): for j in xrange(mid, num_terms): a[i][j] = random.gaussian(0,1) + 1j* random.gaussian(0,1) a[2*mid-i][2*mid-j] = a[i][j].conjugate a[mid][mid] = random.gaussian(0,1) def turb_field(x, a, num_terms, mid, sigma): """ The scalar field f that simulate turbulence (using matrix a) for a particle at position x. """
def gaussian(self): return gaussian(0., 1.)