def run(self):
        data = list()

        fig = plt.figure()
        fig2 = plt.figure()
        ax3 = fig.add_subplot(111, projection='3d')
        ax2 = fig2.add_subplot(111)

        for i in range(0, 500):
            x = -1 + (2 * random.random())
            y = -1 + (2 * random.random())
            z = random.normal(-3, 2) / 10
            ax2.scatter(x, y, c="r", s=6)
            ax3.scatter(x, y, z, c="r", s=6)
            data.append((x, y, z, "b"))

        for i in range(0, 500):
            x = -1 + (2 * random.random())
            y = -1 + (2 * random.random())
            z = random.normal(3, 2) / 10
            ax2.scatter(x, y, c="b", s=6)
            ax3.scatter(x, y, z, c="b", s=6)
            data.append((x, y, z, "r"))

        plt.show()
        return (data)
Beispiel #2
0
 def _determine_base_personality_feature(self, feature_type):
     """Determine a value for a Big Five personality trait."""
     config = self.person.cosmos.config
     # Determine whether feature will be inherited
     feature_will_get_inherited = (
         self.person.biological_mother and
         random.random() < config.big_five_heritability_chance[feature_type]
     )
     # Inherit a feature value
     if feature_will_get_inherited:
         # Inherit this trait (with slight variance)
         takes_after = random.choice([self.person.biological_father, self.person.biological_mother])
         feature_value = normal(
             self._get_a_persons_feature_of_type(person=takes_after, feature_type=feature_type),
             config.big_five_inheritance_sd[feature_type]
         )
     # Generate a feature value
     else:
         takes_after = None
         # Generate from the population mean
         feature_value = normal(
             config.big_five_mean[feature_type], config.big_five_sd[feature_type]
         )
     # Clamp the value
     if feature_value < config.big_five_floor:
         feature_value = config.big_five_floor
     elif feature_value > config.big_five_cap:
         feature_value = config.big_five_cap
     # Cast the feature value as a Feature object
     feature_object = Feature(value=feature_value, inherited_from=takes_after)
     return feature_object
def g2plusplus(x0, y0, a, b, sd, eta, rho, phi0, phi_t, dt, N, steps, t, T):
    T_index = int(T / dt)
    t_index = int(t / dt)
    steps = T_index - t_index

    x = zeros((N, steps + 1))
    y = zeros((N, steps + 1))
    r = zeros((N, steps + 1))
    x[:, 0] = x0
    y[:, 0] = y0
    r[:, 0] = x0 + y0 + phi0

    dW_1 = sqrt(dt) * random.normal(0, 1,
                                    int(N / 2) * steps).reshape(
                                        int(N / 2), steps)
    dW_1 = concatenate((dW_1, -dW_1), axis=0)
    dW_2 = sqrt(dt) * random.normal(0, 1,
                                    int(N / 2) * steps).reshape(
                                        int(N / 2), steps)
    dW_2 = concatenate((dW_2, -dW_2), axis=0)

    #dW = sqrt(dt)*z
    for i in range(1, steps + 1, 1):
        x[:, i] = x[:, i - 1] - a * x[:, i - 1] * dt + sd * dW_1[:, i - 1]
        y[:, i] = y[:, i - 1] - b * y[:, i - 1] * dt + eta * (
            rho * dW_1[:, i - 1] + sqrt(1 - rho * rho) * dW_2[:, i - 1])
        r[:, i] = x[:, i] + y[:, i] + phi_t

    return (r, x, y)
	def def_pos(self,distance,k):
		major_axis = True		# Project along major or minor axes?

		# Load Ellipticity Data for 100 Halos
		pkl_file = open(self.root+'/nkern/Stacking/Halo_Shape/100_halo_ellipticities.pkl','rb')
		input = pkl.Unpickler(pkl_file)
		d = input.load()
		eig_vec = d['eig_vec']
		eig_val = d['eig_val']

		# Define theta and phi for unit vector and construt unit vector in cartesian coordinates
		if major_axis == True:
			eig_vec = eig_vec[k][0]
			r = norm(eig_vec)
			theta = np.arccos(eig_vec[2]/r)
			phi = np.arctan(eig_vec[1]/eig_vec[0])

		if major_axis == False:
			eig_vec = eig_vec[k][1]
			r = norm(eig_vec)
			theta = np.arccos(eig_vec[2]/r)
			phi = np.arctan(eig_vec[1]/eig_vec[0])

	#	if random.random()<.5:
	#		eig_vec *= -1.

		theta = random.normal(theta,.075)
		phi = random.normal(phi,.075)
		x = np.sin(theta)*np.cos(phi)
		y = np.sin(theta)*np.sin(phi)
		z = np.cos(theta)	

		unit = np.array([x,y,z])/norm(np.array([x,y,z]))
		return unit*distance	
Beispiel #5
0
def BenignTraffic():
    background = random.uniform(1000,10000)
    benign_traffic = {'SYN':0,'DATA':0}
    #Total Connections = Page views per user * Number of users of the website (5.54 * 1821.6*10^3)
    #Number of users of the website = (Reach per million * total internet users)/10^6 = (414*4.4*10^9)/10^6
    benign_traffic['SYN'] = random.normal(10092000,3129000)
    #Assuming the data traffic is 5 times the SYN connections received
    benign_traffic['DATA'] = random.normal(10092000,3129000)*5
    return background, benign_traffic
Beispiel #6
0
def getNextColor(index):
    #get color palate

    if index < len(rgb_colors):
        return rgb_colors[index]
    else:
        index_mod = index % len(rgb_colors)
        r, g, b = rgb_colors[index_mod]
        r = max(min(random.normal(r, 25), 255), 0)
        g = max(min(random.normal(g, 25), 255), 0)
        b = max(min(random.normal(b, 25), 255), 0)
        return (r, g, b)
 def generate_particle(self):
     p = Particle()
     if self.biased_particles > 0:
         p.pose.x = random.normal(self.normalx)
         p.pose.y = random.normal(self.normaly)
         p.pose.theta = random.normal(self.normalt)
     else:
         p.pose.x = random.uniform(self.min_x, self.max_x)
         p.pose.y = random.uniform(self.min_y, self.max_y)
         p.pose.theta = random.uniform(-math.pi, math.pi)
     self.biased_particles -= 1
     p.weight = 0.0
     return p
Beispiel #8
0
 def generate_particle(self):
     p = Particle()
     if self.biased_particles > 0:
         p.pose.x = random.normal(self.normalx)
         p.pose.y = random.normal(self.normaly)
         p.pose.theta = random.normal(self.normalt)
     else:
         p.pose.x = random.uniform(self.min_x, self.max_x)
         p.pose.y = random.uniform(self.min_y, self.max_y)
         p.pose.theta = random.uniform(-math.pi, math.pi)
     self.biased_particles -= 1
     p.weight = 0.0
     return p
Beispiel #9
0
def create_sample_atom(inNumberOfAtoms, inAtomType):
    """Creates a mostly spherical atom with inNumberOfAtoms atoms
  and all of element inAtomType.  inAtomType MUST BE A STRING.
  For example, 'Pt79' for Platinum and 79 atoms."""
    positionList = []
    halfOfRadius = 3
    standardDeviation = 1.65
    for x in range(0, inNumberOfAtoms):
        atomX = random.normal(halfOfRadius, standardDeviation) * plusOrMinus()
        atomY = random.normal(halfOfRadius, standardDeviation) * plusOrMinus()
        atomZ = random.normal(halfOfRadius, standardDeviation) * plusOrMinus()
        positionList.append((atomX, atomY, atomZ))
    sample_atom = Atoms(inAtomType, numpy.asarray(positionList))
    return sample_atom
Beispiel #10
0
 def _init_generate_physical_attributes(self):
     """Generate physical attributes for this person."""
     # Prepare these now, for speedier access
     config = self.person.cosmos.config
     year = self.person.cosmos.year
     male = self.person.male
     # Determine age of physical peak, i.e., baseball prime
     self.age_of_physical_peak = config.determine_age_of_physical_peak()
     # Determine handedness
     self.lefty = True if random.random() < config.chance_of_being_left_handed else False
     self.righty = not self.lefty
     self.left_handed = 1.0 if self.lefty else 0.0
     self.right_handed = 1.0 if self.righty else 0.0
     # Determine hustle
     self.hustle = config.determine_hustle()
     # Determine adult height this person will attain, in inches
     if male:
         self.adult_height = normal(
             config.adult_male_height_mean(year=year), config.adult_male_height_sd(year=year)
         )
     else:
         self.adult_height = normal(
             config.adult_female_height_mean(year=year), config.adult_female_height_sd(year=year)
         )
     # Determine this person's BMI  TODO BMI INCREASES AS ADULTHOOD PROGRESSES
     if male:
         self.bmi = normal(
             config.young_adult_male_bmi_mean(year=year), config.young_adult_male_bmi_sd(year=year)
         )
     else:
         self.bmi = normal(
             config.young_adult_female_bmi_mean(year=year), config.young_adult_female_bmi_sd(year=year)
         )
     # Determine propensities for coordination, reflexes, agility, jumping...
     self.coordination_propensity = config.determine_coordination_propensity()
     self.reflexes_propensity = config.determine_reflexes_propensity(
         coordination_propensity=self.coordination_propensity
     )
     self.agility_propensity = config.determine_agility_propensity()
     self.jumping_propensity = config.determine_jumping_propensity()  # Number of inches added/subtracted to base
     # ...and finally footspeed propensity, which is a bit more convoluted to compute
     primitive_coordination = config.determine_primitive_coordination(bmi=self.bmi) if self.bmi > 24 else 1.0
     adult_coordination = primitive_coordination * self.coordination_propensity
     primitive_footspeed = config.determine_primitive_footspeed(
         coordination=adult_coordination, height=self.adult_height
     )
     self.footspeed_propensity = config.determine_footspeed_propensity(primitive_footspeed=primitive_footspeed)
     # Finally, fit these potentials to the person's current age
     self.develop()
Beispiel #11
0
def getRandom_1(inf, sup):
    mu = (inf + sup) / 2
    sigma = (sup - inf) / 6
    res = .0
    while not (inf < res < sup):
        res = normal(mu, sigma)
    return res
def cir_r(r0, sd, t, T, r_bar, kappa, dt, N):
    # Initialize the seed so that every simulation can have the same process of random numbers
    # ==> Needed for the duration and convexity calculation
    random.seed(123456789)

    # Calculate the steps for the simulation
    T_index = int(T / dt)
    t_index = int(t / dt)
    steps = T_index - t_index

    # Initialize and generate interest rate paths using antithetic variates method
    dW = sqrt(dt) * random.normal(0, 1,
                                  int(N / 2) * steps).reshape(
                                      int(N / 2), steps)
    dW = concatenate((dW, -dW), axis=0)

    rates = zeros((N, steps + 1))
    rates[:, 0] = r0

    # using full truncation method
    for i in range(1, steps + 1, 1):
        rates[:, i] = maximum(rates[:, i - 1], 0) + kappa * (
            r_bar - maximum(rates[:, i - 1], 0)) * dt + sd * sqrt(
                maximum(rates[:, i - 1], 0)) * dW[:, i - 1]

    return rates
def generateSequences(number=1, means = [0.1, 0.3, 0.5, 0.7, 0.9], meanBlockLength=1000, sdBlockLength=200, regLength=100000):
    from random import gauss as normal

    for i in xrange(1,number+1):
        totalLength = 0;
        sequences = []
        for mean in means:
            loop = 0;

            while loop < regLength:
                length = max(0, int(normal( meanBlockLength, sdBlockLength )))
                if random() <= mean:
                    sequences.append([totalLength+loop, totalLength+loop+length])
                loop += ( length + 2 )
            sequences[-1][-1] = min(sequences[-1][-1], totalLength+regLength-1)

            totalLength += regLength

        of = open('sim_output_%i.bed' % i, 'w')
        for entry in sequences:
            of.write( "name\t%i\t%i\n" % tuple(entry) )
        of.close()

    of = open('sim_lengths.txt', 'w')
    of.write("name\t0\t%i" % totalLength )
    of.close()
def hypersphere(n_dimensions,n_samples=1000,k_space=20,section=False,offset=0,\
    offset_dimension=0,noise=False,noise_amplitude=.01,comb_noise=False):
    random.seed()
    data = np.zeros((n_samples,k_space))
    i = 0
    while i < n_samples:
        j = 0
        while j < n_dimensions:# actually seeding Values
            if section == True:
                a = random.random()
            else:
                a = random.normal(0,1)
            data[i,j]=a
            j += 1
        norm = np.linalg.norm(data[i])
        if noise == False:# making each vector into sphere
            data[i] = data[i]/norm
        if noise==True:
            noise_term = (random.uniform(-1,1) * noise_amplitude)
            #print(noise_term)
            data[i] = (data[i]/norm) + noise_term
        i += 1
    if comb_noise == True:
        for num in range(0, n_samples):
            for zero_dim in range(n_dimensions, k_space):
                data[num,zero_dim]= (random.uniform(-1,1) * noise_amplitude)
    j = offset_dimension
    if offset != 0:
        i = 0
        while i < n_samples:
            data[i,j] = offset
            i += 1
    data= pd.DataFrame(data)
    # print(data)
    return data
Beispiel #15
0
 def perturb_particles(self, perturb=True):
     for i, p in enumerate(self.particles):
         newpos = array(self.refpos[i])
         if perturb:
             newpos += random.normal(0, self.tau, 3)
         newpos = IMP.algebra.Vector3D(newpos)
         IMP.core.XYZ(p).set_coordinates(newpos)
def hypersphere(n_dimensions,n_samples=1000,k_space=20,section=False,offset=0,\
    offset_dimension=0,noise=False,noise_amplitude=.01):
    random.seed()
    data = np.zeros((n_samples, k_space))
    i = 0
    while i < n_samples:
        j = 0
        while j < n_dimensions:
            if section == True:
                a = random.random()
            else:
                a = random.normal(0, 1)
            data[i, j] = a
            j += 1
        norm = np.linalg.norm(data[i])
        if noise == False:
            data[i] = data[i] / norm
        if noise == True:
            noise_term = (random.uniform(-1, 1) * noise_amplitude)
            print(noise_term)
            data[i] = (data[i] / norm) + noise_term
        i += 1
    j = offset_dimension
    if offset != 0:
        i = 0
        while i < n_samples:
            data[i, j] = offset
            i += 1
    data = pd.DataFrame(data)
    # print(data)
    return data
Beispiel #17
0
def generateSequences(number=1, means = [0.1, 0.3, 0.5, 0.7, 0.9], meanBlockLength=1000, sdBlockLength=200, regLength=100000):
    from random import gauss as normal

    for i in xrange(1,number+1):
        totalLength = 0;
        sequences = []
        for mean in means:
            loop = 0;

            while loop < regLength:
                length = max(0, int(normal( meanBlockLength, sdBlockLength )))
                if random() <= mean:
                    sequences.append([totalLength+loop, totalLength+loop+length])
                loop += ( length + 2 )
            sequences[-1][-1] = min(sequences[-1][-1], totalLength+regLength-1)

            totalLength += regLength

        of = open('sim_output_%i.bed' % i, 'w')
        for entry in sequences:
            of.write( "name\t%i\t%i\n" % tuple(entry) )
        of.close()

    of = open('sim_lengths.txt', 'w')
    of.write("name\t0\t%i" % totalLength )
    of.close()
def _continuous_with_edges(neighbors, x_ij, WP, WL):
  weight = lambda x_kl: WP / (0.01 + (x_ij - x_kl)**2)
  variance = 0.5 / (sum([weight(z[0]) for z in neighbors]) + WL)
  mean = 2*variance * (WL*x_ij + sum([weight(z[0]) * z[1] for z in neighbors]))
  stdev = variance**0.5
  z = normal(mean, stdev)
  return clamp(mean + z*stdev, 0.0, 1.0)
Beispiel #19
0
def change_weights(x):
    p = random.uniform(0, 1)
    if p < 0.1:
        gaus = random.normal(0, 0.1)
        return x + gaus
    else:
        return x
Beispiel #20
0
def _continuous_with_edges(neighbors, x_ij, WP, WL):
    weight = lambda x_kl: WP / (0.01 + (x_ij - x_kl)**2)
    variance = 0.5 / (sum([weight(z[0]) for z in neighbors]) + WL)
    mean = 2 * variance * (WL * x_ij +
                           sum([weight(z[0]) * z[1] for z in neighbors]))
    stdev = variance**0.5
    z = normal(mean, stdev)
    return clamp(mean + z * stdev, 0.0, 1.0)
Beispiel #21
0
def _continuous(neighbors, x_ij, WP, WL):
    # Calculate the parameters for our normal distribution (from equations
    #  8 and 12 in the assignment sheet.)
    variance = 0.5 / (WP * len(neighbors) + WL)
    mean = 2 * variance * (WL * x_ij + sum([WP * z[1] for z in neighbors]))
    stdev = variance**0.5
    z = normal(mean, stdev)
    return clamp(mean + z * stdev, 0.0, 1.0)
def _continuous(neighbors, x_ij, WP, WL):
  # Calculate the parameters for our normal distribution (from equations
  #  8 and 12 in the assignment sheet.)
  variance = 0.5 / (WP * len(neighbors) + WL)
  mean = 2*variance * (WL*x_ij + sum([WP*z[1] for z in neighbors]))
  stdev = variance**0.5
  z = normal(mean, stdev)
  return clamp(mean + z*stdev, 0.0, 1.0)
Beispiel #23
0
 def call_fly_out_or_trap(self, batted_ball):
     """Call a fielding act either a fly out or a trap."""
     # First, determine the crucial timestep, which is the timestep in which the
     # ball truly landed such that no fly out should be scored -- this will depend on
     # the rules and whether they allow for bounding fly outs
     if batted_ball.in_foul_territory:
         if batted_ball.at_bat.game.rules.foul_ball_on_first_bounce_is_out:
             if batted_ball.second_landing_timestep:
                 crucial_timestep = batted_ball.second_landing_timestep
             else:
                 # Ball just plopped down on its first timestep, so there's no chance for
                 # a bounding catch -- as such, give arbitrary high number for crucial timestep,
                 # which will never allow for a FlyOut call
                 crucial_timestep = 999
         else:
             crucial_timestep = batted_ball.landing_timestep
     else:  # elif not batted_ball.in_foul_territory:
         if batted_ball.at_bat.game.rules.fair_ball_on_first_bounce_is_out:
             if batted_ball.second_landing_timestep:
                 crucial_timestep = batted_ball.second_landing_timestep
             else:
                 crucial_timestep = 999
         else:
             crucial_timestep = batted_ball.landing_timestep
     # Next, determine the true difference, in seconds, between the current timestep,
     # which is when the fielding act in question has occurred, and the crucial timestep
     # in which the ball bounced to preclude any true fly out -- negative values represent
     # the ball landing first, and thus cases where the true call is a trap
     true_difference_between_ball_landing_and_fielding_act = crucial_timestep - batted_ball.time_since_contact
     if true_difference_between_ball_landing_and_fielding_act < -0.1:
         # If the ball landed two or more timesteps ago, it's not even a trap, so
         # don't bother making a call
         pass
     else:
         if true_difference_between_ball_landing_and_fielding_act > 0:
             true_call = "Out"
         else:
             true_call = "Trap"
         # To simulate umpire imperfection and inconsistency, pollute the perfect (though
         # coarse-grained) representation of the difference in time
         umpire_perceived_difference = normal(
             true_difference_between_ball_landing_and_fielding_act, 0.04)
         if umpire_perceived_difference > 0:
             FlyOutCall(
                 umpire=self,
                 call="Out",
                 true_call=true_call,
                 true_difference=
                 true_difference_between_ball_landing_and_fielding_act,
                 batted_ball=batted_ball)
         else:
             FlyOutCall(
                 umpire=self,
                 call="Trap",
                 true_call=true_call,
                 true_difference=
                 true_difference_between_ball_landing_and_fielding_act,
                 batted_ball=batted_ball)
Beispiel #24
0
def cir_r(r0, sd, T, N, r_bar, kappa, dt, steps):
    rates = zeros((N, steps+1))
    rates[:, 0] = r0
    z = random.normal(0, 1, N*steps).reshape(N, steps)
    dW = sqrt(dt)*z
    for i in range(1, steps+1, 1):
        rates[:, i] = rates[:, i-1] + kappa*(r_bar - rates[:, i-1])*dt + sd*sqrt(rates[:, i-1])*dW[:, i-1]

    return rates 
Beispiel #25
0
def GenerateDataset(n):
    """ 
    GENERATEDATASET generates a sample dataset
    :param n: (scalar) nb of pts. 
    :param f: (function handle) function along which to sample 
    :return: 
    """
    data = np.zeros((n, 3))
    # parameters (changable)
    p = 0.5

    # data generation
    for i in range(0, n):
        t = rdm.binomial(1, p)
        data[i, 0] = t
        data[i, 1] = t * rdm.normal(0, 1) * (1 - t) * rdm.normal(2, 1)
        data[i, 2] = t * rdm.normal(0, 1) * (1 - t) * rdm.normal(2, 1)
    return data
Beispiel #26
0
 def getRandomness(self):
     if (self.varianceType == "uniform"):
         return (self.mean + random.randint(0, self.var))
     if (self.varianceType == "normal"):
         return int(round(random.normal(self.mean, self.var)))
     if (self.varianceType == "exponential"):
         return int(round(np.random.exponential(self.mean)))
     else:
         return 0
Beispiel #27
0
 def f(x):
     """
     :param x: numpy array st. each row is an observation 
     """
     n = x.shape[0]
     y = []
     for i in range(0, n):
         ni = rdm.normal()
         y.append(mu + a * (x[i] - Ex) + sig * ni)
     return np.array(y)
Beispiel #28
0
    def reset(self):
        self.sim_time = 0

        # satellite state
        self.pos = 0
        self.orbit = 0
        self.last_action = None

        # memory state
        self.memory_level = 0
        self.images = [-1] * self.MEMORY_SIZE
        self.analysis = [False] * self.MEMORY_SIZE
        self.satellite_busy_time = 0

        # Generate Targets
        self.initRandomTargets(int(round(random.normal(8, 4))))

        # Generate Ground Stations
        self.initRandomStations(int(round(random.normal(2, 1))))
Beispiel #29
0
def vasicek_r(r0, sd, T, N, r_bar, kappa, dt, steps):
    rates = zeros((N, steps+1))
    rates[:, 0] = r0
    z = random.normal(0, 1, N*steps).reshape(N, steps)
    dW = sqrt(dt)*z
    # r_tk = k*(r_bar - r_tk-1)*dt + sd*sqrt(r_tk-1)*dW(sqrt(dt)*z)
    for i in range(1, steps+1, 1):
        rates[:, i] = rates[:, i-1] + kappa*(r_bar - rates[:, i-1])*dt + sd*dW[:, i-1]

    return rates #np.mean(rates, axis = 0) # not sure 1 path or the entire paths?
	def rand_pos(self,distance):
	        '''Picks a random position for the observer a given distance away from the center'''
		theta = random.normal(np.pi/2,np.pi/4)
		phi = random.uniform(0,2*np.pi)
		x = np.sin(theta)*np.cos(phi)
		y = np.sin(theta)*np.sin(phi)
		z = np.cos(theta)
	
		unit = np.array([x,y,z])/(x**2+y**2+z**2)**(.5)
		# move the position a random 'distance' Mpc away
	        return distance*unit
Beispiel #31
0
def add_student(df):
    if len(df)==0:
        studentnum = 1
    else:
        studentnum = df.tail(1)['student'].values[0] + 1
    majornum = rand.choice(list(range(0,1000,10)))
    coursenum = rand.normal(majornum-3,majornum+3)
    
    temp = pd.DataFrame({'student':[studentnum],'major':[majornum],'course':[coursenum],'semester':['S1']})
    df = pd.concat([df,temp])
    
    for i in range(4):
        coursenum = rand.normal(majornum-5,majornum+5)
        for i in range(5):
            prev_courses = df.tail(5)['course'].values
            if coursenum in prev_courses:
                coursenum = rand.normal(majornum-5,majornum+5)
                
        temp = pd.DataFrame({'student':[studentnum],'major':[majornum],'course':[coursenum],'semester':['S1']})
        df = pd.concat([df,temp])
        
    return df
Beispiel #32
0
def generateX(Ex, Vx, n):
    """ 
    GENERATEX generates the dataset of n points xi st. xi~N(Ex, sqrt(Vx))
    :param Ex: (scalar) expectance of x 
    :param Vx: (scalar) variance of x
    :param n: (scalar) number of wanted samples

    :return: 
    """
    y = []
    for i in range(0, n):
        y.append(rdm.normal(Ex, np.sqrt(Vx)))
    return np.array(y)
Beispiel #33
0
def get_source_radius(default=DEF_RAD,
                      rand=True,
                      uni=True,
                      minm=38 * ONE,
                      maxm=62 * ONE,
                      sd=7):
    if (rand):
        if (uni):
            return random.uniform(minm, maxm)
        else:
            return random.normal(default, sd)
    else:
        return default
def GaussianNoise(src, means, sigma, percetage):
    NoiseImg = src
    NoiseNum = int(percetage * src.shape[0] * src.shape[1])
    for i in range(NoiseNum):
        randX = random.randint(0, src.shape[0] - 1)
        randY = random.randint(0, src.shape[1] - 1)
        # NoiseImg[randX, randY] = NoiseImg[randX, randY] + random.gauss(means, sigma)
        NoiseImg[randX,
                 randY] = NoiseImg[randX, randY] + random.normal(means, sigma)
        if NoiseImg[randX, randY] < 0:
            NoiseImg[randX, randY] = 0
        elif NoiseImg[randX, randY] > 255:
            NoiseImg[randX, randY] = 255
    return NoiseImg
Beispiel #35
0
def fft_random(n):
    """
    Brainless number crunching just to have a substantial task:
    """
    for i in range(n):
        x = random.normal(0, 0.1, 2000)
        # y = fft(x)
        y = 2 * x

        if (i % 30 == 0):
            process_percent = int(100 * float(i) / float(n))
            current_task.update_state(
                state='PROGRESS', meta={'process_percent': process_percent})
    return random.random()
Beispiel #36
0
 def call_fly_out_or_trap(self, batted_ball):
     """Call a fielding act either a fly out or a trap."""
     # First, determine the crucial timestep, which is the timestep in which the
     # ball truly landed such that no fly out should be scored -- this will depend on
     # the rules and whether they allow for bounding fly outs
     if batted_ball.in_foul_territory:
         if batted_ball.at_bat.game.rules.foul_ball_on_first_bounce_is_out:
             if batted_ball.second_landing_timestep:
                 crucial_timestep = batted_ball.second_landing_timestep
             else:
                 # Ball just plopped down on its first timestep, so there's no chance for
                 # a bounding catch -- as such, give arbitrary high number for crucial timestep,
                 # which will never allow for a FlyOut call
                 crucial_timestep = 999
         else:
             crucial_timestep = batted_ball.landing_timestep
     else:  # elif not batted_ball.in_foul_territory:
         if batted_ball.at_bat.game.rules.fair_ball_on_first_bounce_is_out:
             if batted_ball.second_landing_timestep:
                 crucial_timestep = batted_ball.second_landing_timestep
             else:
                 crucial_timestep = 999
         else:
             crucial_timestep = batted_ball.landing_timestep
     # Next, determine the true difference, in seconds, between the current timestep,
     # which is when the fielding act in question has occurred, and the crucial timestep
     # in which the ball bounced to preclude any true fly out -- negative values represent
     # the ball landing first, and thus cases where the true call is a trap
     true_difference_between_ball_landing_and_fielding_act = crucial_timestep - batted_ball.time_since_contact
     if true_difference_between_ball_landing_and_fielding_act < -0.1:
         # If the ball landed two or more timesteps ago, it's not even a trap, so
         # don't bother making a call
         pass
     else:
         if true_difference_between_ball_landing_and_fielding_act > 0:
             true_call = "Out"
         else:
             true_call = "Trap"
         # To simulate umpire imperfection and inconsistency, pollute the perfect (though
         # coarse-grained) representation of the difference in time
         umpire_perceived_difference = normal(true_difference_between_ball_landing_and_fielding_act, 0.04)
         if umpire_perceived_difference > 0:
             FlyOutCall(umpire=self, call="Out", true_call=true_call,
                        true_difference=true_difference_between_ball_landing_and_fielding_act,
                        batted_ball=batted_ball)
         else:
             FlyOutCall(umpire=self, call="Trap", true_call=true_call,
                        true_difference=true_difference_between_ball_landing_and_fielding_act,
                        batted_ball=batted_ball)
def generete_2D_points(
    groups: int = 100,
    min_num_in_group: int = 10,
    max_num_in_group: int = 50,
    precision: int = 9,
    random_state: int = 123,
) -> None:
    f = open("2d_points.txt", mode="w", encoding="utf-8")
    f.write("{} {}\n".format(groups, precision))
    seed(random_state)
    for group in range(groups):
        num_points = randint(min_num_in_group, max_num_in_group)
        points = []
        for _ in range(num_points):
            x = round(normal(0, 10), 2)
            y = round(normal(0, 20), 2)
            points.append(Point(x, y))
        min_dist = round(brute_force(points), precision)

        f.write("{} {}\n".format(num_points, min_dist))
        for point in points:
            x, y = point.x, point.y
            f.write(f"{x} {y}\n")
    f.close()
Beispiel #38
0
    def multivariate_normal(meanMat, covMat, n):
        """ this constructs 2D multivariate dist, given a mean and cov list 
        """

        from math import sqrt
        from random import gauss as normal

        # make sure that the mean and cov entries make sense
        assert len(meanMat) == 2
        assert len(covMat) == 2
        assert len(covMat[0]) == 2
        assert len(covMat[1]) == 2

        # make sure that cov matrix is symmetric
        assert covMat[0][1] == covMat[1][0]

        # first, calculate the cholesky decomposition of the cov matrix
        # I'll use an explicit Cholesky-Crout algorithm since I know it's 2x2
        L11 = sqrt(covMat[0][0])
        L12 = covMat[0][1] / L11
        # I add +0.000001 to covMat[1][1] - L12**2 because rounding errors sometimes
        # give me very small negative values, and then sqrt raises a domain error
        # I could use a try-catch, but I like to avoid the overhead since this
        # is a potentially hot spot in the algorithm - and it doesnt really matter
        L22 = sqrt(covMat[1][1] - L12**2 + 0.000001)

        mvn = [[], []]
        # then I'll build a 2xn vector of MVN random samples
        for loop in xrange(n):
            z1 = normal(0, 1)
            z2 = normal(0, 1)

            mvn[0].append(meanMat[0] + L11 * z1)
            mvn[1].append(meanMat[1] + L12 * z1 + L22 * z2)

        return zip(mvn[0], mvn[1])
    def multivariate_normal(meanMat, covMat, n):
        """ this constructs 2D multivariate dist, given a mean and cov list 
        """

        from math import sqrt
        from random import gauss as normal

        # make sure that the mean and cov entries make sense
        assert len(meanMat) == 2
        assert len(covMat) == 2
        assert len(covMat[0]) == 2
        assert len(covMat[1]) == 2

        # make sure that cov matrix is symmetric
        assert covMat[0][1] == covMat[1][0]

        # first, calculate the cholesky decomposition of the cov matrix
        # I'll use an explicit Cholesky-Crout algorithm since I know it's 2x2
        L11 = sqrt( covMat[0][0] )
        L12 = covMat[0][1]/L11
        # I add +0.000001 to covMat[1][1] - L12**2 because rounding errors sometimes
        # give me very small negative values, and then sqrt raises a domain error
        # I could use a try-catch, but I like to avoid the overhead since this
        # is a potentially hot spot in the algorithm - and it doesnt really matter
        L22 = sqrt( covMat[1][1] - L12**2 + 0.000001)

        mvn = [ [], [] ]
        # then I'll build a 2xn vector of MVN random samples
        for loop in xrange(n):
            z1 = normal(0,1)
            z2 = normal(0,1)

            mvn[0].append( meanMat[0] + L11*z1 )
            mvn[1].append( meanMat[1] + L12*z1 + L22*z2 )

        return zip(mvn[0], mvn[1])
Beispiel #40
0
 def _init_inherit_physical_attributes(self):
     """Inherit physical attributes from this person's parents."""
     config = self.person.cosmos.config
     mother, father = self.person.biological_mother, self.person.biological_father
     parents = (mother.body, father.body)
     # Handedness
     if random.random() < config.heritability_of_handedness:
         takes_after = random.choice(parents)
         self.left_handed = Feature(value=takes_after.left_handed, inherited_from=takes_after)
         self.right_handed = Feature(value=takes_after.right_handed, inherited_from=takes_after)
     # Hustle
     if random.random() < config.heritability_of_hustle:
         takes_after = random.choice(parents)
         inherited_hustle = takes_after.hustle
         mutated_hustle = normal(inherited_hustle, config.hustle_mutation_sd)
         self.hustle = Feature(value=mutated_hustle, inherited_from=takes_after)
     else:
         pass  # TODO SET UP GENERATING FROM NOTHING
Beispiel #41
0
def nearlySphericalAtom(definingString, inRadius, number):
    """definingString should be something like " 'Pt80' ", for example.
  inRadius should be the radius that you wish to have for the atom.
  number should be the number of atoms that will be in the molecule."""
    positionList = []
    for x in range(number):
        xDistance = random.uniform(0, inRadius) * plusOrMinus()
        remainingX = ((inRadius ** 2) - (xDistance ** 2)) ** 0.5
        yDistance = random.uniform(0, remainingX) * plusOrMinus()
        zDistance = random.uniform(
            0, (((remainingX ** 2) - (yDistance ** 2)) ** 0.5) * plusOrMinus() + random.normal(0, 0.1)
        )
        coordinates = (xDistance, yDistance, zDistance)
        positionList.append(coordinates)
    newAtom = Atoms(definingString, positionList)
    calc = EMT()
    newAtom.set_calculator(calc)
    dyn = LBFGSLineSearch(atoms=newAtom)
    dyn.run(steps=200000)
    dyn = FIRE(atoms=newAtom)
    dyn.run(fmax=0.01)
    return newAtom
Beispiel #42
0
def find_best_tau(x, mu):
    """
    returns the value of tau which maximizes normal loglik for a fixed (x,mu)
    :param x:
    :param mu:
    """
    if mu == 0:
        tau = 1. / (mu + 1)
    else:
        tau = 1. / mu  #starting point
    ll = Normal(x, mu, tau)
    i = 0;
    j = 0
    while i < 1000 and j < 100000:
        taun = tau + random.normal()
        l = Normal(x, mu, taun)
        if l > ll:
            tau = taun
            ll = l
            i += 1
        j += 1
    return tau
Beispiel #43
0
def createNoise(nPoints, background,gain,readnoise,exptime,ncombine):
    """
    Create an image with Poisson + Gaussian noise corresponding
    to the sky background and the exposure time
    """
    import numpy
    from numpy import random

    absBackground = background*gain	# now in electrons

    # generate the Poisson and Gaussian signal
    error=0
    while error==0:
	try:
    		ran_arr = random.poisson(absBackground, nPoints) + ncombine*random.normal(0., readnoise, nPoints)
		#ran_arr = absBackground + ncombine*random.normal(0., readnoise, nPoints)
		error=1
	except:
		error=0


    float_arr = numpy.array(ran_arr/gain, dtype=numpy.float32)

    return float_arr
Beispiel #44
0
 def __init__(self):
     self.weight = normal(32.5, 1.5)
Beispiel #45
0
 def __init__(self):
     self.weight = normal(5.125, 0.0625)
     self.yarn_synthetic_composition = 0.0
import pylab as P
import mpl_toolkits.mplot3d.axes3d as P3




P0=150
mu=.15
s=0.04
t=1

m=7

X=[]
Y=[]

Pt=P0


for t in [0,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5]:
	tendencia	=	(mu-s**2/2)*t
	ruido		=	s*sqrt(t)*normal(0,1)
	Pt			=	P0*exp(tendencia+ruido)

	X.append(t)
	Y.append(Pt)

P.plot(X,Y)
P.show()
Beispiel #47
0
    def _init_umpire_biases(self):
        """Initialize umpire biases for a person.

        These biases are triggered in tandem by Umpire.call_pitch().

        Primary source: http://www.sloansportsconference.com/wp-content/
        uploads/2014/02/2014_SSAC_What-Does-it-Take-to-Call-a-Strike.pdf
        """
        # Pitch-call inconsistency represents how consistent an
        # umpire will be in attributing a certain call to a specific
        # pitch location over multiple pitches; we represent this as
        # a standard deviation in number of ball widths (the same units
        # with which we represent the strike zone)
        self.pitch_call_inconsistency = abs(normal(0, 0.15))
        # Pitch-edge biases represent the umpire's mean deviation
        # from a true edge of the strike zone in how he
        # represents that edge inasmuch as the calls he makes
        # (studies show that umpires show huge bias for the top edge,
        # considerable bias for the left and bottom edges, and less bias
        # for the right edge)
        self.pitch_call_left_edge_bias = normal(-0.3, 0.15)
        self.pitch_call_right_edge_bias = normal(-0.15, 0.05)
        self.pitch_call_top_edge_bias = normal(-0.65, 0.35)
        self.pitch_call_bottom_edge_bias = normal(1.25, 0.5)
        # Count biases represent whether and how the umpire expands
        # the strike zone when there is three balls and/or constricts
        # the strike zone when there is two strikes -- this bias
        # will affect the ump's representation of all four edges of
        # the strike zone for this pitch, thus they have no sign
        # [Note: these biases are not enacted on a full count]
        self.pitch_call_two_strikes_bias = normal(1, 0.25)
        self.pitch_call_three_balls_bias = normal(0.3, 0.1)
        # Previous-call biases represent whether and how the umpire expands
        # the strike zone after calling a ball and/or constricts the
        # strike zone after calling a strike [Note: these biases ar not
        # enacted on a full-count]
        self.pitch_call_just_called_strike_bias = normal(1, 0.25)
        self.pitch_call_just_called_ball_bias = normal(0.3, 0.1)
        # Left-handedness bias represents how the umpire moves the
        # vertical edges of the strike zone further left for
        # left-handed hitters (Source: http://www.lookoutlanding.com/
        # 2012/10/29/3561060/the-strike-zone)
        self.pitch_call_lefty_bias = normal(-0.07, 0.03)
        # Home-team pitch-call bias represents how the umpire expands
        # the strike zone slightly for home-team pitchers -- this value
        # will be used to expand all four edges of the strike zone, so
        # it small
        self.pitch_call_home_team_bias = abs(normal(0.0, 0.1))
        # Tie-at-base policy represents whether the umpire's procedure
        # for calls at a base is to enforce that the tag must precede
        # the runner reaching the base ('tie goes to the runner', which
        # is not an actual rule) or that the runner must beat the tag --
        # the value represents the number of seconds that will be
        # subtracted from the true time at which the runner reached base
        if random.random() < 0.7:
            # Tie given to runner
            self.play_at_base_tie_policy = 0.01
        else:
            self.play_at_base_tie_policy = -0.01
        # Prior-entry bias makes an umpire call a batter-runner out at
        # first when he is truly safe, due to perceiving the auditory
        # stimulus of the ball embedding in the glove as occurring
        # slightly earlier than it actually does -- this represents
        # the number of seconds that will be subtracted from the true
        # time at which the runner reached base
        self.play_at_first_prior_entry_bias = abs(normal(0.0, 0.015))
        # Play-at-base inconsistency represents how consistent the
        # umpire will be in how he calls plays at a base. The value
        # represents a standard error in number of seconds, which
        # will be either added to or subtracted from the true time
        # at which the baserunner reached
        self.play_at_base_inconsistency = abs(normal(0.0, 0.005))
Beispiel #48
0
 def call_play_at_base(self, playing_action, baserunner, base, throw=None, fielder_afoot=None):
     """Call a baserunner either safe or out."""
     # This is some housekeeping that can probably be deleted if the specified errors never pop up
     if base == "1B":
         assert baserunner is playing_action.running_to_first or baserunner is playing_action.retreating_to_first, "" \
             "Umpire was tasked with calling out {} at first, but that runner " \
             "is not attempting to take that base.".format(baserunner.last_name)
     elif base == "2B":
         assert baserunner is playing_action.running_to_second or baserunner is playing_action.retreating_to_second, "" \
             "Umpire was tasked with calling out {} at second, but that runner " \
             "is not attempting to take that base.".format(baserunner.last_name)
     elif base == "3B":
         assert baserunner is playing_action.running_to_third or baserunner is playing_action.retreating_to_third, "" \
             "Umpire was tasked with calling out {} at third, but that runner " \
             "is not attempting to take that base.".format(baserunner.last_name)
     elif base == "H":
         assert baserunner is playing_action.running_to_home or baserunner.safely_on_base, "" \
             "Umpire was tasked with calling out {} at home, but that runner " \
             "is not attempting to take that base.".format(baserunner.last_name)
     # If the baserunner hasn't reached base yet, we need to calculate at what timestep
     # they *will/would have* reached base
     if not baserunner.timestep_reached_base:
         dist_from_baserunner_to_base = 90 - (baserunner.percent_to_base*90)
         time_until_baserunner_reaches_base = dist_from_baserunner_to_base * baserunner.full_speed_seconds_per_foot
         baserunner.timestep_reached_base = (
             playing_action.batted_ball.time_since_contact + time_until_baserunner_reaches_base
         )
     # If the ball has reached the base via throw, we know the timestep it reached base;
     # if it reached base via a fielder's on-foot approach, we need to calculate it
     if throw:
         timestep_ball_reached_base = throw.timestep_reached_target
     else:  # elif fielder_afoot
         dist_from_fielder_to_base = math.hypot(
             fielder_afoot.immediate_goal[0]-fielder_afoot.location[0],
             fielder_afoot.immediate_goal[1]-fielder_afoot.location[1]
         )
         time_until_fielder_reaches_base = dist_from_fielder_to_base * fielder_afoot.full_speed_seconds_per_foot
         timestep_ball_reached_base = (
             playing_action.batted_ball.time_since_contact + time_until_fielder_reaches_base
         )
     # Get the difference in time between the baserunner reaching base
     # and the throw reached the first baseman's glove -- this will be
     # negative if the runner beat the throw
     baserunner_diff_from_throw = true_difference = (
         baserunner.timestep_reached_base - timestep_ball_reached_base
     )
     # Make note of the true call for this play -- we'll say that ties go to the runner,
     # though the chance of one is extremely unlikely
     if baserunner_diff_from_throw <= 0:
         true_call = "Safe"
     else:
         true_call = "Out"
     # Pollute this perfectly accurate difference for whether the
     # umpire believes the throw must beat the runner ('tie goes to
     # the runner') or vice versa
     baserunner_diff_from_throw -= self.play_at_base_tie_policy
     # If play is at first, further pollute the difference for how susceptible the umpire
     # is to a prior-entry bias, explained in _init_umpire_biases()
     if base == "1B":
         baserunner_diff_from_throw += self.play_at_first_prior_entry_bias
     # Finally, *to simulate umpire inconsistency*, further pollute the
     # difference by regenerating it from a normal distribution around
     # itself with the umpire's inconsistency standard error as the
     # standard deviation
     baserunner_diff_from_throw = (
         normal(baserunner_diff_from_throw, self.play_at_base_inconsistency)
     )
     if baserunner_diff_from_throw <= 0:
         PlayAtBaseCall(at_bat=playing_action.at_bat, umpire=self, call="Safe", true_call=true_call,
                        true_difference=true_difference, baserunner=baserunner, base=base, throw=throw,
                        fielder_afoot=fielder_afoot)
     else:
         PlayAtBaseCall(at_bat=playing_action.at_bat, umpire=self, call="Out", true_call=true_call,
                        true_difference=true_difference, baserunner=baserunner, base=base, throw=throw,
                        fielder_afoot=fielder_afoot)
Beispiel #49
0
        elif 2 < pitch.actual_x < 4:
            # Pull down toward [0, 0]
            framed_x = pitch.actual_x - pitch.catcher.pitch_framing
        else:
            framed_x = pitch.actual_x
        if -5 < pitch.actual_y < -3:
            framed_y = pitch.actual_y + pitch.catcher.pitch_framing
        elif 3 < pitch.actual_x < 5:
            framed_y = pitch.actual_y - pitch.catcher.pitch_framing
        else:
            framed_y = pitch.actual_y
        # Finally, *to simulate umpire inconsistency*, pollute the
        # framed position of the pitch using the umpire's rating
        # for pitch call consistency as a standard deviation
        pitch_location = (
            normal(framed_x, self.pitch_call_inconsistency),
            normal(framed_y, self.pitch_call_inconsistency)
        )
        # Now, make the call if consideration of the polluted pitch
        # location (which is only offset as a trick to represent umpire
        # inconsistency) relative to the umpire's biased model of the
        # trick zone
        if (left_edge < pitch_location[0] < right_edge and
                bottom_edge < pitch_location[1] < top_edge):
            return "Strike"
        else:
            return "Ball"

    def call_play_at_base(self, playing_action, baserunner, base, throw=None, fielder_afoot=None):
        """Call a baserunner either safe or out."""
        # This is some housekeeping that can probably be deleted if the specified errors never pop up
 def repair_duration(self):
     # Normal deviation with avg 15 min and dev 1 min
     return normal(15 * 60, 1 * 60)