Beispiel #1
0
 def __init__(self, start_shape, stop_shape, depth=2, conv_part=Conv1dAC):
     _Net.__init__(self, start_shape, stop_shape, depth)
     self.conv_part = conv_part(start_shape=start_shape,
                                stop_shape=stop_shape,
                                depth=depth,
                                bias_prob=0.3)
     self.lin_part = LinearAC(start_shape=None,
                              stop_shape=(10, ),
                              depth=depth,
                              bias_prob=0.3)
     self.change_num = IntParam(name="")
Beispiel #2
0
 def __init__(
     self,
     start_shape,
     stop_shape,
     min_features=10,
     max_features=128,
     depth=2,
     bias_prob=0.0,
 ):
     _Net.__init__(self, start_shape, stop_shape, depth)
     self.layers = [Linear(bias=False)]
     self.limits = (min_features, max_features)
     if bias_prob > 0:
         self.layers[0].bias.randomize(true_prob=bias_prob)
     self.layers[0].out_features.randomize(limits=self.limits)
Beispiel #3
0
 def __call__(self, num_nets, startnum=1):
     t = self.layers[0].bias
     if t.is_random and t.true_prob > 0:
         if "Only" in self.name:
             self.name = self.name.replace("Only", "Bias")
         elif "Bias" not in self.name:
             self.name = self.name + "Bias"
     return _Net.__call__(self, num_nets, startnum)
Beispiel #4
0
 def __call__(self, num_nets, startnum=1):
     self.name = "{}".format(
         self.__class__.__name__.replace("AC",
                                         self.ac.val.__class__.__name__))
     return _Net.__call__(self, num_nets, startnum)
Beispiel #5
0
 def __init__(self, start_shape, stop_shape, depth, convclass, bias_prob=0):
     _Net.__init__(self, start_shape, stop_shape, depth)
     self.layers = [convclass()]
     self.layers[0].out_channels.randomize(limits=(self.stop_shape[0], 64))
     if bias_prob > 0:
         self.layers[0].bias.randomize(true_prob=bias_prob)
Beispiel #6
0
 def __call__(self, num_nets, startnum=1):
     self.name = "Linear{}".format(self.ac.val.__class__.__name__)
     return _Net.__call__(self, num_nets, startnum)
Beispiel #7
0
 def __init__(self, start_shape, stop_shape, depth=3):
     _Net.__init__(self, start_shape, stop_shape, depth)
     self.layers.append(Conv2dAC(start_shape, [10, 1, 1], depth))
     self.layers.append(Conv2dThenLinear(start_shape, [10, 1, 1], depth))
     self.change_num = IntParam("", default=1)