Beispiel #1
0
def confoundglm(
    data,
    regressors,
    debug=False,
    showprogressbar=True,
    reportstep=1000,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    r"""Filters multiple regressors out of an array of data

    Parameters
    ----------
    data : 2d numpy array
        A data array.  First index is the spatial dimension, second is the time (filtering) dimension.

    regressors: 2d numpy array
        The set of regressors to filter out of each timecourse.  The first dimension is the regressor number, second is the time (filtering) dimension:

    debug : boolean
        Print additional diagnostic information if True

    Returns
    -------
    """
    if debug:
        print("data shape:", data.shape)
        print("regressors shape:", regressors.shape)
    datatoremove = np.zeros(data.shape[1], dtype=rt_floattype)
    filtereddata = data * 0.0
    for i in range(data.shape[0]):
        if showprogressbar and (i > 0) and (i % reportstep == 0
                                            or i == data.shape[0] - 1):
            tide_util.progressbar(i + 1,
                                  data.shape[0],
                                  label="Percent complete")
        datatoremove *= 0.0
        thefit, R = tide_fit.mlregress(regressors, data[i, :])
        if i == 0 and debug:
            print("fit shape:", thefit.shape)
        for j in range(regressors.shape[0]):
            datatoremove += rt_floatset(
                rt_floatset(thefit[0, 1 + j]) * regressors[j, :])
        filtereddata[i, :] = data[i, :] - datatoremove
    return filtereddata
Beispiel #2
0
def _process_data(data_in, inQ, outQ, showprogressbar=True, reportstep=1000, chunksize=10000):
    # send pos/data to workers
    data_out = []
    totalnum = len(data_in)
    numchunks = int(totalnum // chunksize)
    remainder = totalnum - numchunks * chunksize
    if showprogressbar:
        tide_util.progressbar(0, totalnum, label="Percent complete")

    # process all of the complete chunks
    for thechunk in range(numchunks):
        # queue the chunk
        for i, dat in enumerate(data_in[thechunk * chunksize : (thechunk + 1) * chunksize]):
            inQ.put(dat)
        offset = thechunk * chunksize

        # retrieve the chunk
        numreturned = 0
        while True:
            ret = outQ.get()
            if ret is not None:
                data_out.append(ret)
            numreturned += 1
            if (((numreturned + offset + 1) % reportstep) == 0) and showprogressbar:
                tide_util.progressbar(numreturned + offset + 1, totalnum, label="Percent complete")
            if numreturned > chunksize - 1:
                break

    # queue the remainder
    for i, dat in enumerate(data_in[numchunks * chunksize : numchunks * chunksize + remainder]):
        inQ.put(dat)
    numreturned = 0
    offset = numchunks * chunksize

    # retrieve the remainder
    while True:
        ret = outQ.get()
        if ret is not None:
            data_out.append(ret)
        numreturned += 1
        if (((numreturned + offset + 1) % reportstep) == 0) and showprogressbar:
            tide_util.progressbar(numreturned + offset + 1, totalnum, label="Percent complete")
        if numreturned > remainder - 1:
            break
    if showprogressbar:
        tide_util.progressbar(totalnum, totalnum, label="Percent complete")
    print()

    return data_out
Beispiel #3
0
def _process_data(data_in, inQ, outQ, showprogressbar=True, reportstep=1000, chunksize=10000):
    # send pos/data to workers
    data_out = []
    totalnum = len(data_in)
    numchunks = int(totalnum // chunksize)
    remainder = totalnum - numchunks * chunksize
    if showprogressbar:
        tide_util.progressbar(0, totalnum, label="Percent complete")

    # process all of the complete chunks
    for thechunk in range(numchunks):
        # queue the chunk
        for i, dat in enumerate(data_in[thechunk * chunksize:(thechunk + 1) * chunksize]):
            inQ.put(dat)
        offset = thechunk * chunksize

        # retrieve the chunk
        numreturned = 0
        while True:
            ret = outQ.get()
            if ret is not None:
                data_out.append(ret)
            numreturned += 1
            if (((numreturned + offset + 1) % reportstep) == 0) and showprogressbar:
                tide_util.progressbar(numreturned + offset + 1, totalnum, label="Percent complete")
            if numreturned > chunksize - 1:
                break

    # queue the remainder
    for i, dat in enumerate(data_in[numchunks * chunksize:numchunks * chunksize + remainder]):
        inQ.put(dat)
    numreturned = 0
    offset = numchunks * chunksize

    # retrieve the remainder
    while True:
        ret = outQ.get()
        if ret is not None:
            data_out.append(ret)
        numreturned += 1
        if (((numreturned + offset + 1) % reportstep) == 0) and showprogressbar:
            tide_util.progressbar(numreturned + offset + 1, totalnum, label="Percent complete")
        if numreturned > remainder - 1:
            break
    if showprogressbar:
        tide_util.progressbar(totalnum, totalnum, label="Percent complete")
    print()

    return data_out
Beispiel #4
0
def confoundglm(data,
                 regressors,
                 debug=False,
                 showprogressbar=True,
                 reportstep=1000,
                 rt_floatset=np.float64,
                 rt_floattype='float64'):
    r"""Filters multiple regressors out of an array of data in place

    Parameters
    ----------
    data : 2d numpy array
        A data array.  First index is the spatial dimension, second is the time (filtering) dimension.

    regressors: 2d numpy array
        The set of regressors to filter out of each timecourse.  The first dimension is the regressor number, second is the time (filtering) dimension:

    debug : boolean
        Print additional diagnostic information if True

    Returns
    -------
    """
    if debug:
        print('data shape:', data.shape)
        print('regressors shape:', regressors.shape)
    datatoremove = np.zeros(data.shape[1], dtype=rt_floattype)
    filtereddata = data * 0.0
    for i in range(data.shape[0]):
        if showprogressbar and (i > 0) and (i % reportstep == 0 or i == data.shape[0] - 1):
            tide_util.progressbar(i + 1, data.shape[0], label='Percent complete')
        datatoremove *= 0.0
        thefit, R = tide_fit.mlregress(regressors, data[i, :])
        if i == 0 and debug:
            print('fit shape:', thefit.shape)
        for j in range(regressors.shape[0]):
            datatoremove += rt_floatset(rt_floatset(thefit[0, 1 + j]) * regressors[j, :])
        filtereddata[i, :] = data[i, :] - datatoremove
    return filtereddata
Beispiel #5
0
def getNullDistributionDatax(indata,
                             corrscale,
                             ncprefilter,
                             oversampfreq,
                             corrorigin,
                             lagmininpts,
                             lagmaxinpts,
                             optiondict,
                             rt_floatset=np.float64,
                             rt_floattype='float64'):
    inputshape = np.asarray([optiondict['numestreps']])
    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def nullCorrelation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(_procOneNullCorrelationx(val, indata, ncprefilter, oversampfreq, corrscale, corrorigin,
                                                     lagmininpts, lagmaxinpts, optiondict,
                                                     rt_floatset=rt_floatset,
                                                     rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(nullCorrelation_consumer,
                                                inputshape, None,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])

        # unpack the data
        corrlist = np.asarray(data_out, dtype=rt_floattype)
    else:
        corrlist = np.zeros((optiondict['numestreps']), dtype=rt_floattype)

        for i in range(0, optiondict['numestreps']):
            # make a shuffled copy of the regressors
            shuffleddata = np.random.permutation(indata)

            # crosscorrelate with original, fit, and return the maximum value, and add it to the list
            thexcorr = _procOneNullCorrelationx(i, indata, ncprefilter, oversampfreq, corrscale, corrorigin,
                                               lagmininpts, lagmaxinpts, optiondict,
                                               rt_floatset=rt_floatset,
                                               rt_floattype=rt_floattype)
            corrlist[i] = thexcorr

            # progress
            if optiondict['showprogressbar']:
                tide_util.progressbar(i + 1, optiondict['numestreps'], label='Percent complete')

        # jump to line after progress bar
        print()

    # return the distribution data
    numnonzero = len(np.where(corrlist != 0.0)[0])
    print(numnonzero, 'non-zero correlations out of', len(corrlist), '(', 100.0 * numnonzero / len(corrlist), '%)')
    return corrlist
Beispiel #6
0
def getNullDistributionData(indata,
                            corrscale,
                            ncprefilter,
                            oversampfreq,
                            corrorigin,
                            lagmininpts,
                            lagmaxinpts,
                            optiondict,
                            rt_floatset=np.float64,
                            rt_floattype='float64'
                            ):
    inputshape = np.asarray([optiondict['numestreps']])
    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def nullCorrelation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(_procOneNullCorrelation(val,
                                                     indata,
                                                     ncprefilter,
                                                     oversampfreq,
                                                     corrscale,
                                                     corrorigin,
                                                     lagmininpts,
                                                     lagmaxinpts,
                                                     optiondict,
                                                     rt_floatset=rt_floatset,
                                                     rt_floattype=rt_floattype
                                                     ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(nullCorrelation_consumer,
                                                inputshape, None,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])

        # unpack the data
        volumetotal = 0
        corrlist = np.asarray(data_out, dtype=rt_floattype)
    else:
        corrlist = np.zeros((optiondict['numestreps']), dtype=rt_floattype)

        for i in range(0, optiondict['numestreps']):
            # make a shuffled copy of the regressors
            shuffleddata = np.random.permutation(indata)

            # crosscorrelate with original
            thexcorr, dummy = tide_corrpass.onecorrelation(shuffleddata,
                                                           oversampfreq,
                                                           corrorigin,
                                                           lagmininpts,
                                                           lagmaxinpts,
                                                           ncprefilter,
                                                           indata,
                                                           usewindowfunc=optiondict['usewindowfunc'],
                                                           detrendorder=optiondict['detrendorder'],
                                                           windowfunc=optiondict['windowfunc'],
                                                           corrweighting=optiondict['corrweighting'])

            # fit the correlation
            maxindex, maxlag, maxval, maxsigma, maskval, failreason = \
                tide_corrfit.onecorrfit(thexcorr,
                           corrscale[corrorigin - lagmininpts:corrorigin + lagmaxinpts],
                           optiondict,
                           zerooutbadfit=True,
                           rt_floatset=rt_floatset,
                           rt_floattype=rt_floattype
                           )

            # find and tabulate correlation coefficient at optimal lag
            corrlist[i] = maxval

            # progress
            if optiondict['showprogressbar']:
                tide_util.progressbar(i + 1, optiondict['numestreps'], label='Percent complete')

        # jump to line after progress bar
        print()

    # return the distribution data
    numnonzero = len(np.where(corrlist != 0.0)[0])
    print(numnonzero, 'non-zero correlations out of', len(corrlist), '(', 100.0 * numnonzero / len(corrlist), '%)')
    return corrlist
Beispiel #7
0
def refineregressor(
    fmridata,
    fmritr,
    shiftedtcs,
    weights,
    passnum,
    lagstrengths,
    lagtimes,
    lagsigma,
    lagmask,
    R2,
    theprefilter,
    optiondict,
    padtrs=60,
    bipolar=False,
    includemask=None,
    excludemask=None,
    debug=False,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    """

    Parameters
    ----------
    fmridata : 4D numpy float array
       fMRI data
    fmritr : float
        Data repetition rate, in seconds
    shiftedtcs : 4D numpy float array
        Time aligned voxel timecourses
    weights :  unknown
        unknown
    passnum : int
        Number of the pass (for labelling output)
    lagstrengths : 3D numpy float array
        Maximum correlation coefficient in every voxel
    lagtimes : 3D numpy float array
        Time delay of maximum crosscorrelation in seconds
    lagsigma : 3D numpy float array
        Gaussian width of the crosscorrelation peak, in seconds.
    lagmask : 3D numpy float array
        Mask of voxels with successful correlation fits.
    R2 : 3D numpy float array
        Square of the maximum correlation coefficient in every voxel
    theprefilter : function
        The filter function to use
    optiondict : dict
        Dictionary of all internal rapidtide configuration variables.
    padtrs : int, optional
        Number of timepoints to pad onto each end
    includemask : 3D array
        Mask of voxels to include in refinement.  Default is None (all voxels).
    excludemask : 3D array
        Mask of voxels to exclude from refinement.  Default is None (no voxels).
    debug : bool
        Enable additional debugging output.  Default is False
    rt_floatset : function
        Function to coerce variable types
    rt_floattype : {'float32', 'float64'}
        Data type for internal variables

    Returns
    -------
    volumetotal : int
        Number of voxels processed
    outputdata : float array
        New regressor
    maskarray : 3D array
        Mask of voxels used for refinement
    """
    inputshape = np.shape(fmridata)
    if optiondict["ampthresh"] < 0.0:
        if bipolar:
            theampthresh = tide_stats.getfracval(np.fabs(lagstrengths),
                                                 -optiondict["ampthresh"],
                                                 nozero=True)
        else:
            theampthresh = tide_stats.getfracval(lagstrengths,
                                                 -optiondict["ampthresh"],
                                                 nozero=True)
        print(
            "setting ampthresh to the",
            -100.0 * optiondict["ampthresh"],
            "th percentile (",
            theampthresh,
            ")",
        )
    else:
        theampthresh = optiondict["ampthresh"]
    if bipolar:
        ampmask = np.where(
            np.fabs(lagstrengths) >= theampthresh, np.int16(1), np.int16(0))
    else:
        ampmask = np.where(lagstrengths >= theampthresh, np.int16(1),
                           np.int16(0))
    if optiondict["lagmaskside"] == "upper":
        delaymask = np.where(
            (lagtimes - optiondict["offsettime"]) > optiondict["lagminthresh"],
            np.int16(1),
            np.int16(0),
        ) * np.where(
            (lagtimes - optiondict["offsettime"]) < optiondict["lagmaxthresh"],
            np.int16(1),
            np.int16(0),
        )
    elif optiondict["lagmaskside"] == "lower":
        delaymask = np.where(
            (lagtimes - optiondict["offsettime"]) <
            -optiondict["lagminthresh"],
            np.int16(1),
            np.int16(0),
        ) * np.where(
            (lagtimes - optiondict["offsettime"]) >
            -optiondict["lagmaxthresh"],
            np.int16(1),
            np.int16(0),
        )
    else:
        abslag = abs(lagtimes) - optiondict["offsettime"]
        delaymask = np.where(abslag > optiondict["lagminthresh"], np.int16(1),
                             np.int16(0)) * np.where(
                                 abslag < optiondict["lagmaxthresh"],
                                 np.int16(1), np.int16(0))
    sigmamask = np.where(lagsigma < optiondict["sigmathresh"], np.int16(1),
                         np.int16(0))
    locationmask = lagmask + 0
    if includemask is not None:
        locationmask = locationmask * includemask
    if excludemask is not None:
        locationmask = locationmask * (1 - excludemask)
    locationmask = locationmask.astype(np.int16)
    print("location mask created")

    # first generate the refine mask
    locationfails = np.sum(1 - locationmask)
    ampfails = np.sum(1 - ampmask * locationmask)
    lagfails = np.sum(1 - delaymask * locationmask)
    sigmafails = np.sum(1 - sigmamask * locationmask)
    refinemask = locationmask * ampmask * delaymask * sigmamask
    if tide_stats.getmasksize(refinemask) == 0:
        print("ERROR: no voxels in the refine mask:")
        print(
            "\n	",
            locationfails,
            " locationfails",
            "\n	",
            ampfails,
            " ampfails",
            "\n	",
            lagfails,
            " lagfails",
            "\n	",
            sigmafails,
            " sigmafails",
        )
        if (includemask is None) and (excludemask is None):
            print("\nRelax ampthresh, delaythresh, or sigmathresh - exiting")
        else:
            print(
                "\nChange include/exclude masks or relax ampthresh, delaythresh, or sigmathresh - exiting"
            )
        return 0, None, None, locationfails, ampfails, lagfails, sigmafails

    if optiondict["cleanrefined"]:
        shiftmask = locationmask
    else:
        shiftmask = refinemask
    volumetotal = np.sum(shiftmask)
    reportstep = 1000

    # timeshift the valid voxels
    if optiondict["nprocs"] > 1:
        # define the consumer function here so it inherits most of the arguments
        def timeshift_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneVoxelTimeShift(
                            val,
                            fmridata[val, :],
                            lagstrengths[val],
                            R2[val],
                            lagtimes[val],
                            padtrs,
                            fmritr,
                            theprefilter,
                            optiondict["fmrifreq"],
                            refineprenorm=optiondict["refineprenorm"],
                            lagmaxthresh=optiondict["lagmaxthresh"],
                            refineweighting=optiondict["refineweighting"],
                            detrendorder=optiondict["detrendorder"],
                            offsettime=optiondict["offsettime"],
                            filterbeforePCA=optiondict["filterbeforePCA"],
                            psdfilter=optiondict["psdfilter"],
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            timeshift_consumer,
            inputshape,
            shiftmask,
            nprocs=optiondict["nprocs"],
            showprogressbar=True,
            chunksize=optiondict["mp_chunksize"],
        )

        # unpack the data
        psdlist = []
        for voxel in data_out:
            shiftedtcs[voxel[0], :] = voxel[1]
            weights[voxel[0], :] = voxel[2]
            if optiondict["psdfilter"]:
                psdlist.append(voxel[3])
        del data_out

    else:
        psdlist = []
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox
                    == inputshape[0] - 1) and optiondict["showprogressbar"]:
                tide_util.progressbar(vox + 1,
                                      inputshape[0],
                                      label="Percent complete (timeshifting)")
            if shiftmask[vox] > 0.5:
                retvals = _procOneVoxelTimeShift(
                    vox,
                    fmridata[vox, :],
                    lagstrengths[vox],
                    R2[vox],
                    lagtimes[vox],
                    padtrs,
                    fmritr,
                    theprefilter,
                    optiondict["fmrifreq"],
                    refineprenorm=optiondict["refineprenorm"],
                    lagmaxthresh=optiondict["lagmaxthresh"],
                    refineweighting=optiondict["refineweighting"],
                    detrendorder=optiondict["detrendorder"],
                    offsettime=optiondict["offsettime"],
                    filterbeforePCA=optiondict["filterbeforePCA"],
                    psdfilter=optiondict["psdfilter"],
                    rt_floatset=rt_floatset,
                    rt_floattype=rt_floattype,
                )
                shiftedtcs[retvals[0], :] = retvals[1]
                weights[retvals[0], :] = retvals[2]
                if optiondict["psdfilter"]:
                    psdlist.append(retvals[3])
        print()

    if optiondict["psdfilter"]:
        print(len(psdlist))
        print(psdlist[0])
        print(np.shape(np.asarray(psdlist, dtype=rt_floattype)))
        averagepsd = np.mean(np.asarray(psdlist, dtype=rt_floattype), axis=0)
        stdpsd = np.std(np.asarray(psdlist, dtype=rt_floattype), axis=0)
        snr = np.nan_to_num(averagepsd / stdpsd)

    # now generate the refined timecourse(s)
    validlist = np.where(refinemask > 0)[0]
    refinevoxels = shiftedtcs[validlist, :]
    if bipolar:
        for thevoxel in range(len(validlist)):
            if lagstrengths[validlist][thevoxel] < 0.0:
                refinevoxels[thevoxel, :] *= -1.0
    refineweights = weights[validlist]
    weightsum = np.sum(refineweights, axis=0) / volumetotal
    averagedata = np.sum(refinevoxels, axis=0) / volumetotal
    if optiondict["cleanrefined"]:
        invalidlist = np.where((1 - ampmask) > 0)[0]
        discardvoxels = shiftedtcs[invalidlist]
        discardweights = weights[invalidlist]
        discardweightsum = np.sum(discardweights, axis=0) / volumetotal
        averagediscard = np.sum(discardvoxels, axis=0) / volumetotal
    if optiondict["dodispersioncalc"]:
        print("splitting regressors by time lag for phase delay estimation")
        laglist = np.arange(
            optiondict["dispersioncalc_lower"],
            optiondict["dispersioncalc_upper"],
            optiondict["dispersioncalc_step"],
        )
        dispersioncalcout = np.zeros((np.shape(laglist)[0], inputshape[1]),
                                     dtype=rt_floattype)
        fftlen = int(inputshape[1] // 2)
        fftlen -= fftlen % 2
        dispersioncalcspecmag = np.zeros((np.shape(laglist)[0], fftlen),
                                         dtype=rt_floattype)
        dispersioncalcspecphase = np.zeros((np.shape(laglist)[0], fftlen),
                                           dtype=rt_floattype)
        for lagnum in range(0, np.shape(laglist)[0]):
            lower = laglist[lagnum] - optiondict["dispersioncalc_step"] / 2.0
            upper = laglist[lagnum] + optiondict["dispersioncalc_step"] / 2.0
            inlagrange = np.where(
                locationmask * ampmask *
                np.where(lower < lagtimes, np.int16(1), np.int16(0)) *
                np.where(lagtimes < upper, np.int16(1), np.int16(0)))[0]
            print(
                "    summing",
                np.shape(inlagrange)[0],
                "regressors with lags from",
                lower,
                "to",
                upper,
            )
            if np.shape(inlagrange)[0] > 0:
                dispersioncalcout[lagnum, :] = tide_math.corrnormalize(
                    np.mean(shiftedtcs[inlagrange], axis=0),
                    detrendorder=optiondict["detrendorder"],
                    windowfunc=optiondict["windowfunc"],
                )
                (
                    freqs,
                    dispersioncalcspecmag[lagnum, :],
                    dispersioncalcspecphase[lagnum, :],
                ) = tide_math.polarfft(dispersioncalcout[lagnum, :],
                                       1.0 / fmritr)
            inlagrange = None
        tide_io.writenpvecs(
            dispersioncalcout,
            optiondict["outputname"] + "_dispersioncalcvecs_pass" +
            str(passnum) + ".txt",
        )
        tide_io.writenpvecs(
            dispersioncalcspecmag,
            optiondict["outputname"] + "_dispersioncalcspecmag_pass" +
            str(passnum) + ".txt",
        )
        tide_io.writenpvecs(
            dispersioncalcspecphase,
            optiondict["outputname"] + "_dispersioncalcspecphase_pass" +
            str(passnum) + ".txt",
        )
        tide_io.writenpvecs(
            freqs,
            optiondict["outputname"] + "_dispersioncalcfreqs_pass" +
            str(passnum) + ".txt",
        )

    if optiondict["pcacomponents"] < 0.0:
        pcacomponents = "mle"
    elif optiondict["pcacomponents"] >= 1.0:
        pcacomponents = int(np.round(optiondict["pcacomponents"]))
    elif optiondict["pcacomponents"] == 0.0:
        print("0.0 is not an allowed value for pcacomponents")
        sys.exit()
    else:
        pcacomponents = optiondict["pcacomponents"]
    icacomponents = 1

    if optiondict["refinetype"] == "ica":
        print("performing ica refinement")
        thefit = FastICA(n_components=icacomponents).fit(
            refinevoxels)  # Reconstruct signals
        print("Using first of ", len(thefit.components_), " components")
        icadata = thefit.components_[0]
        filteredavg = tide_math.corrnormalize(
            theprefilter.apply(optiondict["fmrifreq"], averagedata),
            detrendorder=optiondict["detrendorder"],
        )
        filteredica = tide_math.corrnormalize(
            theprefilter.apply(optiondict["fmrifreq"], icadata),
            detrendorder=optiondict["detrendorder"],
        )
        thepxcorr = pearsonr(filteredavg, filteredica)[0]
        print("ica/avg correlation = ", thepxcorr)
        if thepxcorr > 0.0:
            outputdata = 1.0 * icadata
        else:
            outputdata = -1.0 * icadata
    elif optiondict["refinetype"] == "pca":
        # use the method of "A novel perspective to calibrate temporal delays in cerebrovascular reactivity
        # using hypercapnic and hyperoxic respiratory challenges". NeuroImage 187, 154?165 (2019).
        print("performing pca refinement with pcacomponents set to",
              pcacomponents)
        try:
            thefit = PCA(n_components=pcacomponents).fit(refinevoxels)
        except ValueError:
            if pcacomponents == "mle":
                print(
                    "mle estimation failed - falling back to pcacomponents=0.8"
                )
                thefit = PCA(n_components=0.8).fit(refinevoxels)
            else:
                print("unhandled math exception in PCA refinement - exiting")
                sys.exit()
        print(
            "Using ",
            len(thefit.components_),
            " component(s), accounting for ",
            "{:.2f}% of the variance".format(100.0 * np.cumsum(
                thefit.explained_variance_ratio_)[len(thefit.components_) -
                                                  1]),
        )
        reduceddata = thefit.inverse_transform(thefit.transform(refinevoxels))
        if debug:
            print("complex processing: reduceddata.shape =", reduceddata.shape)
        pcadata = np.mean(reduceddata, axis=0)
        filteredavg = tide_math.corrnormalize(
            theprefilter.apply(optiondict["fmrifreq"], averagedata),
            detrendorder=optiondict["detrendorder"],
        )
        filteredpca = tide_math.corrnormalize(
            theprefilter.apply(optiondict["fmrifreq"], pcadata),
            detrendorder=optiondict["detrendorder"],
        )
        thepxcorr = pearsonr(filteredavg, filteredpca)[0]
        print("pca/avg correlation = ", thepxcorr)
        if thepxcorr > 0.0:
            outputdata = 1.0 * pcadata
        else:
            outputdata = -1.0 * pcadata
    elif optiondict["refinetype"] == "weighted_average":
        print("performing weighted averaging refinement")
        outputdata = np.nan_to_num(averagedata / weightsum)
    else:
        print("performing unweighted averaging refinement")
        outputdata = averagedata

    if optiondict["cleanrefined"]:
        thefit, R = tide_fit.mlregress(averagediscard, averagedata)
        fitcoff = rt_floatset(thefit[0, 1])
        datatoremove = rt_floatset(fitcoff * averagediscard)
        outputdata -= datatoremove
    print()
    print(
        "Timeshift applied to " + str(int(volumetotal)) + " voxels, " +
        str(len(validlist)) + " used for refinement:",
        "\n	",
        locationfails,
        " locationfails",
        "\n	",
        ampfails,
        " ampfails",
        "\n	",
        lagfails,
        " lagfails",
        "\n	",
        sigmafails,
        " sigmafails",
    )

    if optiondict["psdfilter"]:
        outputdata = tide_filt.transferfuncfilt(outputdata, snr)

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal, outputdata, refinemask, locationfails, ampfails, lagfails, sigmafails
Beispiel #8
0
def correlationpass(fmridata,
                    fmrifftdata,
                    referencetc,
                    fmri_x,
                    os_fmri_x,
                    tr,
                    corrorigin,
                    lagmininpts,
                    lagmaxinpts,
                    corrout,
                    meanval,
                    ncprefilter,
                    optiondict,
                    rt_floatset=np.float64,
                    rt_floattype='float64'):
    """

    Parameters
    ----------
    fmridata
    fmrifftdata
    referencetc
    fmri_x
    os_fmri_x
    tr
    corrorigin
    lagmininpts
    lagmaxinpts
    corrout
    meanval
    ncprefilter
    optiondict
    rt_floatset
    rt_floattype

    Returns
    -------

    """
    oversampfreq = optiondict['oversampfactor'] / tr
    inputshape = np.shape(fmridata)
    volumetotal = 0
    reportstep = 1000
    thetc = np.zeros(np.shape(os_fmri_x), dtype=rt_floattype)
    theglobalmaxlist = []
    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def correlation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(_procOneVoxelCorrelation(val,
                                                      thetc,
                                                      optiondict,
                                                      fmri_x,
                                                      fmridata[val, :],
                                                      os_fmri_x,
                                                      oversampfreq,
                                                      corrorigin,
                                                      lagmininpts,
                                                      lagmaxinpts,
                                                      ncprefilter,
                                                      referencetc,
                                                      rt_floatset=rt_floatset,
                                                      rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(correlation_consumer,
                                                inputshape, None,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            # corrmask[voxel[0]] = 1
            meanval[voxel[0]] = voxel[1]
            corrout[voxel[0], :] = voxel[2]
            theglobalmaxlist.append(voxel[3] + 0)
            volumetotal += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            dummy, meanval[vox], corrout[vox, :], theglobalmax = _procOneVoxelCorrelation(vox,
                                                                                          thetc,
                                                                                          optiondict,
                                                                                          fmri_x,
                                                                                          fmridata[vox, :],
                                                                                          os_fmri_x,
                                                                                          oversampfreq,
                                                                                          corrorigin,
                                                                                          lagmininpts,
                                                                                          lagmaxinpts,
                                                                                          ncprefilter,
                                                                                          referencetc,
                                                                                          rt_floatset=rt_floatset,
                                                                                          rt_floattype=rt_floattype
                                                                                          )
            theglobalmaxlist.append(theglobalmax + 0)
            volumetotal += 1
    print('\nCorrelation performed on ' + str(volumetotal) + ' voxels')

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal, theglobalmaxlist
Beispiel #9
0
def correlationpass(
    fmridata,
    referencetc,
    theCorrelator,
    fmri_x,
    os_fmri_x,
    lagmininpts,
    lagmaxinpts,
    corrout,
    meanval,
    nprocs=1,
    alwaysmultiproc=False,
    oversampfactor=1,
    interptype="univariate",
    showprogressbar=True,
    chunksize=1000,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    """

    Parameters
    ----------
    fmridata
    referencetc - the reference regressor, already oversampled
    theCorrelator
    fmri_x
    os_fmri_x
    tr
    lagmininpts
    lagmaxinpts
    corrout
    meanval
    nprocs
    oversampfactor
    interptype
    showprogressbar
    chunksize
    rt_floatset
    rt_floattype

    Returns
    -------

    """
    theCorrelator.setreftc(referencetc)
    theCorrelator.setlimits(lagmininpts, lagmaxinpts)

    inputshape = np.shape(fmridata)
    volumetotal = 0
    reportstep = 1000
    thetc = np.zeros(np.shape(os_fmri_x), dtype=rt_floattype)
    theglobalmaxlist = []
    if nprocs > 1 or alwaysmultiproc:
        # define the consumer function here so it inherits most of the arguments
        def correlation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneVoxelCorrelation(
                            val,
                            thetc,
                            theCorrelator,
                            fmri_x,
                            fmridata[val, :],
                            os_fmri_x,
                            oversampfactor=oversampfactor,
                            interptype=interptype,
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        )
                    )

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            correlation_consumer,
            inputshape,
            None,
            nprocs=nprocs,
            showprogressbar=showprogressbar,
            chunksize=chunksize,
        )

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            # corrmask[voxel[0]] = 1
            meanval[voxel[0]] = voxel[1]
            corrout[voxel[0], :] = voxel[2]
            thecorrscale = voxel[3]
            theglobalmaxlist.append(voxel[4] + 0)
            volumetotal += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and showprogressbar:
                tide_util.progressbar(vox + 1, inputshape[0], label="Percent complete")
            (
                dummy,
                meanval[vox],
                corrout[vox, :],
                thecorrscale,
                theglobalmax,
            ) = _procOneVoxelCorrelation(
                vox,
                thetc,
                theCorrelator,
                fmri_x,
                fmridata[vox, :],
                os_fmri_x,
                oversampfactor=oversampfactor,
                interptype=interptype,
                rt_floatset=rt_floatset,
                rt_floattype=rt_floattype,
            )
            theglobalmaxlist.append(theglobalmax + 0)
            volumetotal += 1
    LGR.info(f"\nCorrelation performed on {volumetotal} voxels")

    # garbage collect
    collected = gc.collect()
    LGR.info(f"Garbage collector: collected {collected} objects.")

    return volumetotal, theglobalmaxlist, thecorrscale
Beispiel #10
0
def wienerpass(
    numspatiallocs,
    reportstep,
    fmri_data,
    threshval,
    lagtc,
    optiondict,
    wienerdeconv,
    wpeak,
    resampref_y,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    rt_floatset = (rt_floatset,)
    rt_floattype = rt_floattype
    inputshape = np.shape(fmri_data)
    themask = np.where(np.mean(fmri_data, axis=1) > threshval, 1, 0)
    if optiondict["nprocs"] > 1:
        # define the consumer function here so it inherits most of the arguments
        def Wiener_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneVoxelWiener(
                            val,
                            lagtc[val, :],
                            fmri_data[val, :],
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        )
                    )

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            Wiener_consumer,
            inputshape,
            themask,
            nprocs=optiondict["nprocs"],
            showprogressbar=True,
            chunksize=optiondict["mp_chunksize"],
        )
        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            meanvalue[voxel[0]] = voxel[1]
            rvalue[voxel[0]] = voxel[2]
            r2value[voxel[0]] = voxel[3]
            fitcoff[voxel[0]] = voxel[4]
            fitNorm[voxel[0]] = voxel[5]
            datatoremove[voxel[0], :] = voxel[6]
            filtereddata[voxel[0], :] = voxel[7]
            volumetotal += 1
        data_out = []
    else:
        volumetotal = 0
        for vox in range(0, numspatiallocs):
            if (vox % reportstep == 0 or vox == numspatiallocs - 1) and optiondict[
                "showprogressbar"
            ]:
                tide_util.progressbar(vox + 1, numspatiallocs, label="Percent complete")
            inittc = fmri_data[vox, :].copy()
            if np.mean(inittc) >= threshval:
                (
                    dummy,
                    meanvalue[vox],
                    rvalue[vox],
                    r2value[vox],
                    fitcoff[vox],
                    fitNorm[vox],
                    datatoremove[vox],
                    filtereddata[vox],
                ) = _procOneVoxelWiener(
                    vox, lagtc[vox, :], inittc, rt_floatset=rt_floatset, t_floattype=rt_floattype,
                )
            volumetotal += 1

    return volumetotal
Beispiel #11
0
def fitcorrx(lagtcgenerator,
            timeaxis,
            lagtc,
            corrtimescale,
            thefitter,
            corrout,
            lagmask,
            failimage,
            lagtimes,
            lagstrengths,
            lagsigma,
            gaussout,
            windowout,
            R2,
            nprocs=1,
            fixdelay=False,
            showprogressbar=True,
            chunksize=1000,
            despeckle_thresh=5.0,
            initiallags=None,
            rt_floatset=np.float64,
            rt_floattype='float64'):

    thefitter.setcorrtimeaxis(corrtimescale)
    inputshape = np.shape(corrout)
    if initiallags is None:
        themask = None
    else:
        themask = np.where(initiallags > -1000000.0, 1, 0)
    reportstep = 1000
    volumetotal, ampfails, lagfails, windowfails, widthfails, edgefails, fitfails = 0, 0, 0, 0, 0, 0, 0
    FML_BADAMPLOW = np.uint16(0x01)
    FML_BADAMPHIGH = np.uint16(0x02)
    FML_BADSEARCHWINDOW = np.uint16(0x04)
    FML_BADWIDTH = np.uint16(0x08)
    FML_BADLAG = np.uint16(0x10)
    FML_HITEDGE = np.uint16(0x20)
    FML_FITFAIL = np.uint16(0x40)
    FML_INITFAIL = np.uint16(0x80)
    zerolagtc = rt_floatset(lagtcgenerator.yfromx(timeaxis))
    sliceoffsettime = 0.0

    if nprocs > 1:
        # define the consumer function here so it inherits most of the arguments
        def fitcorr_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if initiallags is None:
                        thislag = None
                    else:
                        thislag = initiallags[val]
                    outQ.put(_procOneVoxelFitcorrx(val,
                                                   corrout[val, :],
                                                   lagtcgenerator,
                                                   timeaxis,
                                                   thefitter,
                                                   disablethresholds=False,
                                                   despeckle_thresh=despeckle_thresh,
                                                   initiallag=thislag,
                                                   fixdelay=fixdelay,
                                                   fixeddelayvalue=0.0,
                                                   rt_floatset=rt_floatset,
                                                   rt_floattype=rt_floattype))
                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(fitcorr_consumer,
                                                inputshape, themask,
                                                nprocs=nprocs,
                                                showprogressbar=showprogressbar,
                                                chunksize=chunksize)

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            volumetotal += voxel[1]
            lagtc[voxel[0], :] = voxel[2]
            lagtimes[voxel[0]] = voxel[3]
            lagstrengths[voxel[0]] = voxel[4]
            lagsigma[voxel[0]] = voxel[5]
            gaussout[voxel[0], :] = voxel[6]
            windowout[voxel[0], :] = voxel[7]
            R2[voxel[0]] = voxel[8]
            lagmask[voxel[0]] = voxel[9]
            failimage[voxel[0]] = voxel[10] & 0x3f
            if (FML_BADAMPLOW | FML_BADAMPHIGH) & voxel[10]:
                ampfails += 1
            if FML_BADSEARCHWINDOW & voxel[10]:
                windowfails += 1
            if FML_BADWIDTH & voxel[10]:
                widthfails += 1
            if FML_BADLAG & voxel[10]:
                lagfails += 1
            if FML_HITEDGE & voxel[10]:
                edgefails += 1
            if (FML_FITFAIL | FML_INITFAIL) & voxel[10]:
                fitfails += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and showprogressbar:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            if themask is None:
                dothisone = True
                thislag = None
            elif themask[vox] > 0:
                dothisone = True
                thislag = initiallags[vox]
            else:
                dothisone = False
                thislag = None
            if dothisone:
                dummy, \
                volumetotalinc, \
                lagtc[vox, :], \
                lagtimes[vox], \
                lagstrengths[vox], \
                lagsigma[vox], \
                gaussout[vox, :], \
                windowout[vox, :], \
                R2[vox], \
                lagmask[vox], \
                failreason = \
                    _procOneVoxelFitcorrx(vox,
                                          corrout[vox, :],
                                          lagtcgenerator,
                                          timeaxis,
                                          thefitter,
                                          disablethresholds=False,
                                          despeckle_thresh=despeckle_thresh,
                                          initiallag=thislag,
                                          fixdelay=fixdelay,
                                          rt_floatset=rt_floatset,
                                          rt_floattype=rt_floattype)
                volumetotal += volumetotalinc
                if (FML_BADAMPLOW | FML_BADAMPHIGH) & failreason:
                    ampfails += 1
                if FML_BADSEARCHWINDOW & failreason:
                    windowfails += 1
                if FML_BADWIDTH & failreason:
                    widthfails += 1
                if FML_BADLAG & failreason:
                    lagfails += 1
                if FML_HITEDGE & failreason:
                    edgefails += 1
                if (FML_FITFAIL | FML_INITFAIL) & failreason:
                    fitfails += 1
    print('\nCorrelation fitted in ' + str(volumetotal) + ' voxels')
    print('\tampfails=', ampfails,
          '\n\tlagfails=', lagfails,
          '\n\twindowfails=', windowfails,
          '\n\twidthfail=', widthfails,
          '\n\tedgefail=', edgefails,
          '\n\tfitfail=', fitfails)

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal
Beispiel #12
0
def fitcorr(genlagtc,
            initial_fmri_x,
            lagtc,
            slicesize,
            corrscale,
            lagmask,
            lagtimes,
            lagstrengths,
            lagsigma,
            corrout,
            meanval,
            gaussout,
            R2,
            optiondict,
            zerooutbadfit=True,
            initiallags=None,
            rt_floatset=np.float64,
            rt_floattype='float64'
            ):
    displayplots = False
    inputshape = np.shape(corrout)
    if initiallags is None:
        themask = None
    else:
        themask = np.where(initiallags > -1000000.0, 1, 0)
    volumetotal, ampfails, lagfails, widthfails, edgefails, fitfails = 0, 0, 0, 0, 0, 0
    reportstep = 1000
    zerolagtc = rt_floatset(genlagtc.yfromx(initial_fmri_x))

    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def fitcorr_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if initiallags is None:
                        thislag = None
                    else:
                        thislag = initiallags[val]
                    outQ.put(
                        _procOneVoxelFitcorr(val,
                                             corrout[val, :],
                                             corrscale, genlagtc,
                                             initial_fmri_x,
                                             optiondict,
                                             zerooutbadfit=zerooutbadfit,
                                             displayplots=False,
                                             initiallag=thislag,
                                             rt_floatset=rt_floatset,
                                             rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(fitcorr_consumer,
                                                inputshape, themask,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])


        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            volumetotal += voxel[1]
            lagtc[voxel[0], :] = voxel[2]
            lagtimes[voxel[0]] = voxel[3]
            lagstrengths[voxel[0]] = voxel[4]
            lagsigma[voxel[0]] = voxel[5]
            gaussout[voxel[0], :] = voxel[6]
            R2[voxel[0]] = voxel[7]
            lagmask[voxel[0]] = voxel[8]
        data_out = []
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            if themask is None:
                dothisone = True
                thislag = None
            elif themask[vox] > 0:
                dothisone = True
                thislag = initiallags[vox]
            else:
                dothisone = False
            if dothisone:
                dummy, \
                volumetotalinc, \
                lagtc[vox, :], \
                lagtimes[vox], \
                lagstrengths[vox], \
                lagsigma[vox], \
                gaussout[vox, :], \
                R2[vox], \
                lagmask[vox], \
                failreason = \
                    _procOneVoxelFitcorr(vox,
                                         corrout[vox, :],
                                         corrscale,
                                         genlagtc,
                                         initial_fmri_x,
                                         optiondict,
                                         zerooutbadfit=zerooutbadfit,
                                         displayplots=False,
                                         initiallag=thislag,
                                         rt_floatset=rt_floatset,
                                         rt_floattype=rt_floattype)

                volumetotal += volumetotalinc
    print('\nCorrelation fitted in ' + str(volumetotal) + ' voxels')
    print('\tampfails=', ampfails, ' lagfails=', lagfails, ' widthfail=', widthfails, ' edgefail=', edgefails,
          ' fitfail=', fitfails)

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal
Beispiel #13
0
def fitcorrx(genlagtc,
            initial_fmri_x,
            lagtc,
            slicesize,
            corrscale,
            lagmask,
            failimage,
            lagtimes,
            lagstrengths,
            lagsigma,
            corrout,
            meanval,
            gaussout,
            windowout,
            R2,
            optiondict,
            zerooutbadfit=True,
            initiallags=None,
            rt_floatset=np.float64,
            rt_floattype='float64'):
    displayplots = False
    inputshape = np.shape(corrout)
    if initiallags is None:
        themask = None
    else:
        themask = np.where(initiallags > -1000000.0, 1, 0)
    reportstep = 1000
    volumetotal, ampfails, lagfails, windowfails, widthfails, edgefails, fitfails = 0, 0, 0, 0, 0, 0, 0
    FML_BADAMPLOW = np.uint16(0x01)
    FML_BADAMPHIGH = np.uint16(0x02)
    FML_BADSEARCHWINDOW = np.uint16(0x04)
    FML_BADWIDTH = np.uint16(0x08)
    FML_BADLAG = np.uint16(0x10)
    FML_HITEDGE = np.uint16(0x20)
    FML_FITFAIL = np.uint16(0x40)
    FML_INITFAIL = np.uint16(0x80)
    zerolagtc = rt_floatset(genlagtc.yfromx(initial_fmri_x))
    sliceoffsettime = 0.0

    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def fitcorr_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if initiallags is None:
                        thislag = None
                    else:
                        thislag = initiallags[val]
                    outQ.put(_procOneVoxelFitcorrx(val,
                                                  corrout[val, :],
                                                  corrscale,
                                                  genlagtc,
                                                  initial_fmri_x,
                                                  optiondict,
                                                  zerooutbadfit=zerooutbadfit,
                                                  displayplots=displayplots,
                                                  initiallag=thislag,
                                                  rt_floatset=rt_floatset,
                                                  rt_floattype=rt_floattype))
                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(fitcorr_consumer,
                                                inputshape, themask,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            volumetotal += voxel[1]
            lagtc[voxel[0], :] = voxel[2]
            lagtimes[voxel[0]] = voxel[3]
            lagstrengths[voxel[0]] = voxel[4]
            lagsigma[voxel[0]] = voxel[5]
            gaussout[voxel[0], :] = voxel[6]
            windowout[voxel[0], :] = voxel[7]
            R2[voxel[0]] = voxel[8]
            lagmask[voxel[0]] = voxel[9]
            failimage[voxel[0]] = voxel[10] & 0x3f
        if (FML_BADAMPLOW | FML_BADAMPHIGH) & voxel[10]:
            ampfails += 1
        if FML_BADSEARCHWINDOW & voxel[10]:
            windowfails += 1
        if FML_BADWIDTH & voxel[10]:
            widthfails += 1
        if FML_BADLAG & voxel[10]:
            lagfails += 1
        if FML_HITEDGE & voxel[10]:
            edgefails += 1
        if (FML_FITFAIL | FML_INITFAIL) & voxel[10]:
            fitfails += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            if themask is None:
                dothisone = True
                thislag = None
            elif themask[vox] > 0:
                dothisone = True
                thislag = initiallags[vox]
            else:
                dothisone = False
                thislag = None
            if dothisone:
                dummy, \
                volumetotalinc, \
                lagtc[vox, :], \
                lagtimes[vox], \
                lagstrengths[vox], \
                lagsigma[vox], \
                gaussout[vox, :], \
                windowout[vox, :], \
                R2[vox], \
                lagmask[vox], \
                failreason = \
                    _procOneVoxelFitcorrx(vox,
                                         corrout[vox, :],
                                         corrscale,
                                         genlagtc,
                                         initial_fmri_x,
                                         optiondict,
                                         zerooutbadfit=zerooutbadfit,
                                         displayplots=displayplots,
                                         initiallag=thislag,
                                         rt_floatset=rt_floatset,
                                         rt_floattype=rt_floattype)
                volumetotal += volumetotalinc
                if (FML_BADAMPLOW | FML_BADAMPHIGH) & failreason:
                    ampfails += 1
                if FML_BADSEARCHWINDOW & failreason:
                    windowfails += 1
                if FML_BADWIDTH & failreason:
                    widthfails += 1
                if FML_BADLAG & failreason:
                    lagfails += 1
                if FML_HITEDGE & failreason:
                    edgefails += 1
                if (FML_FITFAIL | FML_INITFAIL) & failreason:
                    fitfails += 1
    print('\nCorrelation fitted in ' + str(volumetotal) + ' voxels')
    print('\tampfails=', ampfails,
          ' lagfails=', lagfails,
          ' windowfails=', windowfails,
          ' widthfail=', widthfails,
          ' edgefail=', edgefails,
          ' fitfail=', fitfails)

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal
Beispiel #14
0
def fitcorr(lagtcgenerator,
            timeaxis,
            lagtc,
            slicesize,
            corr_x,
            lagmask,
            lagtimes,
            lagstrengths,
            lagsigma,
            corrout,
            meanval,
            gaussout,
            R2,
            optiondict,
            zerooutbadfit=True,
            initiallags=None,
            rt_floatset=np.float64,
            rt_floattype='float64'
            ):
    displayplots = False
    inputshape = np.shape(corrout)
    if initiallags is None:
        themask = None
    else:
        themask = np.where(initiallags > -1000000.0, 1, 0)
    volumetotal, ampfails, lagfails, widthfails, edgefails, fitfails = 0, 0, 0, 0, 0, 0
    reportstep = 1000
    zerolagtc = rt_floatset(lagtcgenerator.yfromx(timeaxis))

    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def fitcorr_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if initiallags is None:
                        thislag = None
                    else:
                        thislag = initiallags[val]
                    outQ.put(
                        _procOneVoxelFitcorr(val,
                                             corrout[val, :],
                                             corr_x, lagtcgenerator,
                                             timeaxis,
                                             optiondict,
                                             zerooutbadfit=zerooutbadfit,
                                             displayplots=False,
                                             initiallag=thislag,
                                             rt_floatset=rt_floatset,
                                             rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(fitcorr_consumer,
                                                inputshape, themask,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])


        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            volumetotal += voxel[1]
            lagtc[voxel[0], :] = voxel[2]
            lagtimes[voxel[0]] = voxel[3]
            lagstrengths[voxel[0]] = voxel[4]
            lagsigma[voxel[0]] = voxel[5]
            gaussout[voxel[0], :] = voxel[6]
            R2[voxel[0]] = voxel[7]
            lagmask[voxel[0]] = voxel[8]
        data_out = []
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            if themask is None:
                dothisone = True
                thislag = None
            elif themask[vox] > 0:
                dothisone = True
                thislag = initiallags[vox]
            else:
                dothisone = False
            if dothisone:
                dummy, \
                volumetotalinc, \
                lagtc[vox, :], \
                lagtimes[vox], \
                lagstrengths[vox], \
                lagsigma[vox], \
                gaussout[vox, :], \
                R2[vox], \
                lagmask[vox], \
                failreason = \
                    _procOneVoxelFitcorr(vox,
                                         corrout[vox, :],
                                         corr_x,
                                         lagtcgenerator,
                                         timeaxis,
                                         optiondict,
                                         zerooutbadfit=zerooutbadfit,
                                         displayplots=False,
                                         initiallag=thislag,
                                         rt_floatset=rt_floatset,
                                         rt_floattype=rt_floattype)

                volumetotal += volumetotalinc
    print('\nCorrelation fitted in ' + str(volumetotal) + ' voxels')
    print('\tampfails=', ampfails, '\n\tlagfails=', lagfails, '\n\twidthfail=', widthfails, '\n\tedgefail=', edgefails,
          '\n\tfitfail=', fitfails)

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal
Beispiel #15
0
def glmpass(
    numprocitems,
    fmri_data,
    threshval,
    theevs,
    meanvalue,
    rvalue,
    r2value,
    fitcoeff,
    fitNorm,
    datatoremove,
    filtereddata,
    reportstep=1000,
    nprocs=1,
    alwaysmultiproc=False,
    procbyvoxel=True,
    showprogressbar=True,
    mp_chunksize=1000,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    inputshape = np.shape(fmri_data)
    if threshval is None:
        themask = None
    else:
        if procbyvoxel:
            meanim = np.mean(fmri_data, axis=1)
            stdim = np.std(fmri_data, axis=1)
        else:
            meanim = np.mean(fmri_data, axis=0)
            stdim = np.std(fmri_data, axis=0)
        if np.mean(stdim) < np.mean(meanim):
            themask = np.where(meanim > threshval, 1, 0)
        else:
            themask = np.where(stdim > threshval, 1, 0)
    if (nprocs > 1 or alwaysmultiproc
        ):  # temporary workaround until I figure out why nprocs > 1 is failing
        # define the consumer function here so it inherits most of the arguments
        def GLM_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if procbyvoxel:
                        outQ.put(
                            _procOneItemGLM(
                                val,
                                theevs[val, :],
                                fmri_data[val, :],
                                rt_floatset=rt_floatset,
                                rt_floattype=rt_floattype,
                            ))
                    else:
                        outQ.put(
                            _procOneItemGLM(
                                val,
                                theevs[:, val],
                                fmri_data[:, val],
                                rt_floatset=rt_floatset,
                                rt_floattype=rt_floattype,
                            ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            GLM_consumer,
            inputshape,
            themask,
            nprocs=nprocs,
            procbyvoxel=procbyvoxel,
            showprogressbar=showprogressbar,
            chunksize=mp_chunksize,
        )

        # unpack the data
        itemstotal = 0
        if procbyvoxel:
            for voxel in data_out:
                meanvalue[voxel[0]] = voxel[1]
                rvalue[voxel[0]] = voxel[2]
                r2value[voxel[0]] = voxel[3]
                fitcoeff[voxel[0]] = voxel[4]
                fitNorm[voxel[0]] = voxel[5]
                datatoremove[voxel[0], :] = voxel[6]
                filtereddata[voxel[0], :] = voxel[7]
                itemstotal += 1
        else:
            for timepoint in data_out:
                meanvalue[timepoint[0]] = timepoint[1]
                rvalue[timepoint[0]] = timepoint[2]
                r2value[timepoint[0]] = timepoint[3]
                fitcoeff[timepoint[0]] = timepoint[4]
                fitNorm[timepoint[0]] = timepoint[5]
                datatoremove[:, timepoint[0]] = timepoint[6]
                filtereddata[:, timepoint[0]] = timepoint[7]
                itemstotal += 1

        del data_out
    else:
        itemstotal = 0
        if procbyvoxel:
            for vox in range(0, numprocitems):
                if (vox % reportstep == 0
                        or vox == numprocitems - 1) and showprogressbar:
                    tide_util.progressbar(vox + 1,
                                          numprocitems,
                                          label="Percent complete")
                thedata = fmri_data[vox, :].copy()
                if (themask is None) or (themask[vox] > 0):
                    (
                        dummy,
                        meanvalue[vox],
                        rvalue[vox],
                        r2value[vox],
                        fitcoeff[vox],
                        fitNorm[vox],
                        datatoremove[vox, :],
                        filtereddata[vox, :],
                    ) = _procOneItemGLM(
                        vox,
                        theevs[vox, :],
                        thedata,
                        rt_floatset=rt_floatset,
                        rt_floattype=rt_floattype,
                    )
                    itemstotal += 1
        else:
            for timepoint in range(0, numprocitems):
                if (timepoint % reportstep == 0
                        or timepoint == numprocitems - 1) and showprogressbar:
                    tide_util.progressbar(timepoint + 1,
                                          numprocitems,
                                          label="Percent complete")
                thedata = fmri_data[:, timepoint].copy()
                if (themask is None) or (themask[timepoint] > 0):
                    (
                        dummy,
                        meanvalue[timepoint],
                        rvalue[timepoint],
                        r2value[timepoint],
                        fitcoeff[timepoint],
                        fitNorm[timepoint],
                        datatoremove[:, timepoint],
                        filtereddata[:, timepoint],
                    ) = _procOneItemGLM(
                        timepoint,
                        theevs[:, timepoint],
                        thedata,
                        rt_floatset=rt_floatset,
                        rt_floattype=rt_floattype,
                    )
                    itemstotal += 1
        if showprogressbar:
            print()
    return itemstotal
Beispiel #16
0
def peakevalpass(
    fmridata,
    referencetc,
    fmri_x,
    os_fmri_x,
    theMutualInformationator,
    xcorr_x,
    corrdata,
    nprocs=1,
    alwaysmultiproc=False,
    bipolar=False,
    oversampfactor=1,
    interptype="univariate",
    showprogressbar=True,
    chunksize=1000,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    """

    Parameters
    ----------
    fmridata
    referencetc
    theCorrelator
    fmri_x
    os_fmri_x
    tr
    corrout
    meanval
    nprocs
    alwaysmultiproc
    oversampfactor
    interptype
    showprogressbar
    chunksize
    rt_floatset
    rt_floattype

    Returns
    -------

    """
    peakdict = {}
    theMutualInformationator.setreftc(referencetc)

    inputshape = np.shape(fmridata)
    volumetotal = 0
    reportstep = 1000
    thetc = np.zeros(np.shape(os_fmri_x), dtype=rt_floattype)
    if nprocs > 1 or alwaysmultiproc:
        # define the consumer function here so it inherits most of the arguments
        def correlation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneVoxelPeaks(
                            val,
                            thetc,
                            theMutualInformationator,
                            fmri_x,
                            fmridata[val, :],
                            os_fmri_x,
                            xcorr_x,
                            corrdata[val, :],
                            bipolar=bipolar,
                            oversampfactor=oversampfactor,
                            interptype=interptype,
                        ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            correlation_consumer,
            inputshape,
            None,
            nprocs=nprocs,
            showprogressbar=showprogressbar,
            chunksize=chunksize,
        )

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            peakdict[str(voxel[0])] = voxel[1]
            volumetotal += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0
                    or vox == inputshape[0] - 1) and showprogressbar:
                tide_util.progressbar(vox + 1,
                                      inputshape[0],
                                      label="Percent complete")
            dummy, peakdict[str(vox)] = _procOneVoxelPeaks(
                vox,
                thetc,
                theMutualInformationator,
                fmri_x,
                fmridata[vox, :],
                os_fmri_x,
                xcorr_x,
                corrdata[vox, :],
                bipolar=bipolar,
                oversampfactor=oversampfactor,
                interptype=interptype,
            )
            volumetotal += 1
    print("\nPeak evaluation performed on " + str(volumetotal) + " voxels")

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal, peakdict
Beispiel #17
0
def glmpass(numprocitems,
            fmri_data,
            threshval,
            lagtc,
            meanvalue,
            rvalue,
            r2value,
            fitcoff,
            fitNorm,
            datatoremove,
            filtereddata,
            reportstep=1000,
            nprocs=1,
            procbyvoxel=True,
            showprogressbar=True,
            addedskip=0,
            mp_chunksize=1000,
            rt_floatset=np.float64,
            rt_floattype='float64'):
    inputshape = np.shape(fmri_data)
    if threshval is None:
        themask = None
    else:
        themask = np.where(np.mean(fmri_data, axis=1) > threshval, 1, 0)
    if nprocs > 1:
        # define the consumer function here so it inherits most of the arguments
        def GLM_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if procbyvoxel:
                        outQ.put(_procOneItemGLM(val,
                                                  lagtc[val, :],
                                                  fmri_data[val, addedskip:],
                                                  rt_floatset=rt_floatset,
                                                  rt_floattype=rt_floattype))
                    else:
                        outQ.put(_procOneItemGLM(val,
                                                  lagtc[:, val],
                                                  fmri_data[:, addedskip + val],
                                                  rt_floatset=rt_floatset,
                                                  rt_floattype=rt_floattype))


                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(GLM_consumer,
                                                inputshape, themask,
                                                nprocs=nprocs,
                                                procbyvoxel=procbyvoxel,
                                                showprogressbar=True,
                                                chunksize=mp_chunksize)

        # unpack the data
        itemstotal = 0
        if procbyvoxel:
            for voxel in data_out:
                meanvalue[voxel[0]] = voxel[1]
                rvalue[voxel[0]] = voxel[2]
                r2value[voxel[0]] = voxel[3]
                fitcoff[voxel[0]] = voxel[4]
                fitNorm[voxel[0]] = voxel[5]
                datatoremove[voxel[0], :] = voxel[6]
                filtereddata[voxel[0], :] = voxel[7]
                itemstotal += 1
        else:
            for timepoint in data_out:
                meanvalue[timepoint[0]] = timepoint[1]
                rvalue[timepoint[0]] = timepoint[2]
                r2value[timepoint[0]] = timepoint[3]
                fitcoff[timepoint[0]] = timepoint[4]
                fitNorm[timepoint[0]] = timepoint[5]
                datatoremove[:, timepoint[0]] = timepoint[6]
                filtereddata[:, timepoint[0]] = timepoint[7]
                itemstotal += 1

        del data_out
    else:
        itemstotal = 0
        if procbyvoxel:
            for vox in range(0, numprocitems):
                if (vox % reportstep == 0 or vox == numprocitems - 1) and showprogressbar:
                    tide_util.progressbar(vox + 1, numprocitems, label='Percent complete')
                inittc = fmri_data[vox, addedskip:].copy()
                if themask[vox] > 0:
                    dummy, \
                    meanvalue[vox],\
                    rvalue[vox], \
                    r2value[vox], \
                    fitcoff[vox], \
                    fitNorm[vox], \
                    datatoremove[vox, :], \
                    filtereddata[vox, :] = \
                        _procOneItemGLM(vox,
                                         lagtc[vox, :],
                                         inittc,
                                         rt_floatset=rt_floatset,
                                         rt_floattype=rt_floattype)
                    itemstotal += 1
        else:
            for timepoint in range(0, numprocitems):
                if (timepoint % reportstep == 0 or timepoint == numprocitems - 1) and showprogressbar:
                    tide_util.progressbar(timepoint + 1, numprocitems, label='Percent complete')
                inittc = fmri_data[:, addedskip + timepoint].copy()
                if themask[timepoint] > 0:
                    dummy, \
                    meanvalue[timepoint], \
                    rvalue[timepoint], \
                    r2value[timepoint], \
                    fitcoff[timepoint], \
                    fitNorm[timepoint], \
                    datatoremove[:, timepoint], \
                    filtereddata[:, timepoint] = \
                        _procOneItemGLM(timepoint,
                                        lagtc[:, timepoint],
                                        inittc,
                                        rt_floatset=rt_floatset,
                                        rt_floattype=rt_floattype)
                    itemstotal += 1
    return itemstotal
Beispiel #18
0
def coherencepass(
    fmridata,
    theCoherer,
    coherencefunc,
    coherencepeakval,
    coherencepeakfreq,
    reportstep,
    alt=False,
    chunksize=1000,
    nprocs=1,
    alwaysmultiproc=False,
    showprogressbar=True,
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    """

    Parameters
    ----------
    fmridata
    theCoherer
    coherencefunc
    coherencepeakval
    coherencepeakfreq
    reportstep
    chunksize
    nprocs
    alwaysmultiproc
    showprogressbar
    rt_floatset
    rt_floattype

    Returns
    -------

    """
    inputshape = np.shape(fmridata)
    volumetotal = 0
    if nprocs > 1 or alwaysmultiproc:
        # define the consumer function here so it inherits most of the arguments
        def coherence_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneVoxelCoherence(
                            val,
                            theCoherer,
                            fmridata[val, :],
                            alt=alt,
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            coherence_consumer,
            inputshape,
            None,
            nprocs=nprocs,
            showprogressbar=showprogressbar,
            chunksize=chunksize,
        )

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            coherencefunc[voxel[0], :] = voxel[2] + 0.0
            coherencepeakval[voxel[0]] = voxel[3] + 0.0
            coherencepeakfreq[voxel[0]] = voxel[4] + 0.0
            volumetotal += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0
                    or vox == inputshape[0] - 1) and showprogressbar:
                tide_util.progressbar(vox + 1,
                                      inputshape[0],
                                      label="Percent complete")
            (
                dummy,
                dummy,
                coherencefunc[vox],
                coherencepeakval[vox],
                coherencepeakfreq[vox],
            ) = _procOneVoxelCoherence(
                vox,
                theCoherer,
                fmridata[vox, :],
                alt=alt,
                rt_floatset=rt_floatset,
                rt_floattype=rt_floattype,
            )
            volumetotal += 1
    print(f"\nCoherence performed on {volumetotal} voxels")

    # garbage collect
    collected = gc.collect()
    print(f"Garbage collector: collected {collected} objects.")

    return volumetotal
Beispiel #19
0
def wienerpass(numspatiallocs,
               reportstep,
               fmri_data,
               threshval,
               lagtc,
               optiondict,
               meanvalue,
               rvalue,
               r2value,
               fitcoff,
               fitNorm,
               datatoremove,
               filtereddata,
               rt_floatset=np.float64,
               rt_floattype='float64'):
    inputshape = np.shape(fmri_data)
    themask = np.where(np.mean(fmri_data, axis=1) > threshval, 1, 0)
    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def Wiener_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(_procOneVoxelWiener(val,
                                                 lagtc[val, :],
                                                 fmri_data[val,
                                                 optiondict['addedskip']:],
                                                 rt_floatset=rt_floatset,
                                                 rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(Wiener_consumer,
                                                inputshape, themask,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])
        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            meanvalue[voxel[0]] = voxel[1]
            rvalue[voxel[0]] = voxel[2]
            r2value[voxel[0]] = voxel[3]
            fitcoff[voxel[0]] = voxel[4]
            fitNorm[voxel[0]] = voxel[5]
            datatoremove[voxel[0], :] = voxel[6]
            filtereddata[voxel[0], :] = voxel[7]
            volumetotal += 1
        data_out = []
    else:
        volumetotal = 0
        for vox in range(0, numspatiallocs):
            if (vox % reportstep == 0 or vox == numspatiallocs - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, numspatiallocs, label='Percent complete')
            inittc = fmri_data[vox, optiondict['addedskip']:].copy()
            if np.mean(inittc) >= threshval:
                dummy, meanvalue[vox], rvalue[vox], r2value[vox], fitcoff[vox], fitNorm[vox], datatoremove[vox], \
                filtereddata[vox] = _procOneVoxelWiener(vox,
                                                        lagtc[vox, :],
                                                        inittc,
                                                        rt_floatset=rt_floatset,
                                                        t_floattype=rt_floattype)
            volumetotal += 1

    return volumetotal
Beispiel #20
0
def fitcorr(
    lagtcgenerator,
    timeaxis,
    lagtc,
    corrtimescale,
    thefitter,
    corrout,
    lagmask,
    failimage,
    lagtimes,
    lagstrengths,
    lagsigma,
    gaussout,
    windowout,
    R2,
    peakdict=None,
    nprocs=1,
    alwaysmultiproc=False,
    fixdelay=False,
    showprogressbar=True,
    chunksize=1000,
    despeckle_thresh=5.0,
    initiallags=None,
    rt_floatset=np.float64,
    rt_floattype="float64",
):

    thefitter.setcorrtimeaxis(corrtimescale)
    inputshape = np.shape(corrout)
    if initiallags is None:
        themask = None
    else:
        themask = np.where(initiallags > -1000000.0, 1, 0)
    reportstep = 1000
    (
        volumetotal,
        ampfails,
        lowlagfails,
        highlagfails,
        lowwidthfails,
        highwidthfails,
        initfails,
        fitfails,
    ) = (0, 0, 0, 0, 0, 0, 0, 0)

    zerolagtc = rt_floatset(lagtcgenerator.yfromx(timeaxis))
    sliceoffsettime = 0.0

    if nprocs > 1 or alwaysmultiproc:
        # define the consumer function here so it inherits most of the arguments
        def fitcorr_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    if initiallags is None:
                        thislag = None
                    else:
                        thislag = initiallags[val]
                    outQ.put(
                        _procOneVoxelFitcorr(
                            val,
                            corrout[val, :],
                            lagtcgenerator,
                            timeaxis,
                            thefitter,
                            disablethresholds=False,
                            despeckle_thresh=despeckle_thresh,
                            initiallag=thislag,
                            fixdelay=fixdelay,
                            fixeddelayvalue=0.0,
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        )
                    )
                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            fitcorr_consumer,
            inputshape,
            themask,
            nprocs=nprocs,
            showprogressbar=showprogressbar,
            chunksize=chunksize,
        )

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            volumetotal += voxel[1]
            lagtc[voxel[0], :] = voxel[2]
            lagtimes[voxel[0]] = voxel[3]
            lagstrengths[voxel[0]] = voxel[4]
            lagsigma[voxel[0]] = voxel[5]
            gaussout[voxel[0], :] = voxel[6]
            windowout[voxel[0], :] = voxel[7]
            R2[voxel[0]] = voxel[8]
            lagmask[voxel[0]] = voxel[9]
            failimage[voxel[0]] = voxel[10] & 0xFFFF
            if (
                thefitter.FML_INITAMPLOW
                | thefitter.FML_INITAMPHIGH
                | thefitter.FML_FITAMPLOW
                | thefitter.FML_FITAMPHIGH
            ) & voxel[10]:
                ampfails += 1
            if (thefitter.FML_INITWIDTHLOW | thefitter.FML_FITWIDTHLOW) & voxel[10]:
                lowwidthfails += 1
            if (thefitter.FML_INITWIDTHHIGH | thefitter.FML_FITWIDTHHIGH) & voxel[10]:
                highwidthfails += 1
            if (thefitter.FML_INITLAGLOW | thefitter.FML_FITLAGLOW) & voxel[10]:
                lowlagfails += 1
            if (thefitter.FML_INITLAGHIGH | thefitter.FML_FITLAGHIGH) & voxel[10]:
                highlagfails += 1
            if thefitter.FML_INITFAIL & voxel[10]:
                initfails += 1
            if thefitter.FML_FITFAIL & voxel[10]:
                fitfails += 1

        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and showprogressbar:
                tide_util.progressbar(vox + 1, inputshape[0], label="Percent complete")
            if themask is None:
                dothisone = True
                thislag = None
            elif themask[vox] > 0:
                dothisone = True
                thislag = initiallags[vox]
            else:
                dothisone = False
                thislag = None
            if dothisone:
                (
                    dummy,
                    volumetotalinc,
                    lagtc[vox, :],
                    lagtimes[vox],
                    lagstrengths[vox],
                    lagsigma[vox],
                    gaussout[vox, :],
                    windowout[vox, :],
                    R2[vox],
                    lagmask[vox],
                    failreason,
                ) = _procOneVoxelFitcorr(
                    vox,
                    corrout[vox, :],
                    lagtcgenerator,
                    timeaxis,
                    thefitter,
                    disablethresholds=False,
                    despeckle_thresh=despeckle_thresh,
                    initiallag=thislag,
                    fixdelay=fixdelay,
                    rt_floatset=rt_floatset,
                    rt_floattype=rt_floattype,
                )
                volumetotal += volumetotalinc
                if (
                    thefitter.FML_INITAMPLOW
                    | thefitter.FML_INITAMPHIGH
                    | thefitter.FML_FITAMPLOW
                    | thefitter.FML_FITAMPHIGH
                ) & failreason:
                    ampfails += 1
                if (thefitter.FML_INITWIDTHLOW | thefitter.FML_FITWIDTHLOW) & failreason:
                    lowwidthfails += 1
                if (thefitter.FML_INITWIDTHHIGH | thefitter.FML_FITWIDTHHIGH) & failreason:
                    highwidthfails += 1
                if (thefitter.FML_INITLAGLOW | thefitter.FML_INITLAGHIGH) & failreason:
                    lowlagfails += 1
                if (thefitter.FML_INITLAGLOW | thefitter.FML_FITLAGLOW) & failreason:
                    lowlagfails += 1
                if (thefitter.FML_INITLAGHIGH | thefitter.FML_FITLAGHIGH) & failreason:
                    highlagfails += 1
                if thefitter.FML_INITFAIL & failreason:
                    initfails += 1
                if thefitter.FML_FITFAIL & failreason:
                    fitfails += 1

    print("\nCorrelation fitted in " + str(volumetotal) + " voxels")
    print(
        "\tampfails:",
        ampfails,
        "\n\tlowlagfails:",
        lowlagfails,
        "\n\thighlagfails:",
        highlagfails,
        "\n\tlowwidthfails:",
        lowwidthfails,
        "\n\thighwidthfail:",
        highwidthfails,
        "\n\ttotal initfails:",
        initfails,
        "\n\ttotal fitfails:",
        fitfails,
    )

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal
Beispiel #21
0
def correlationpass(fmridata,
                    fmrifftdata,
                    referencetc,
                    fmri_x,
                    os_fmri_x,
                    tr,
                    corrorigin,
                    lagmininpts,
                    lagmaxinpts,
                    corrout,
                    meanval,
                    ncprefilter,
                    optiondict,
                    rt_floatset=np.float64,
                    rt_floattype='float64'):
    """

    Parameters
    ----------
    fmridata
    fmrifftdata
    referencetc
    fmri_x
    os_fmri_x
    tr
    corrorigin
    lagmininpts
    lagmaxinpts
    corrout
    meanval
    ncprefilter
    optiondict
    rt_floatset
    rt_floattype

    Returns
    -------

    """
    oversampfreq = optiondict['oversampfactor'] / tr
    inputshape = np.shape(fmridata)
    volumetotal = 0
    reportstep = 1000
    thetc = np.zeros(np.shape(os_fmri_x), dtype=rt_floattype)
    theglobalmaxlist = []
    if optiondict['nprocs'] > 1:
        # define the consumer function here so it inherits most of the arguments
        def correlation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(_procOneVoxelCorrelation(val,
                                                      thetc,
                                                      optiondict,
                                                      fmri_x,
                                                      fmridata[val, :],
                                                      os_fmri_x,
                                                      oversampfreq,
                                                      corrorigin,
                                                      lagmininpts,
                                                      lagmaxinpts,
                                                      ncprefilter,
                                                      referencetc,
                                                      rt_floatset=rt_floatset,
                                                      rt_floattype=rt_floattype))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(correlation_consumer,
                                                inputshape, None,
                                                nprocs=optiondict['nprocs'],
                                                showprogressbar=True,
                                                chunksize=optiondict['mp_chunksize'])

        # unpack the data
        volumetotal = 0
        for voxel in data_out:
            # corrmask[voxel[0]] = 1
            meanval[voxel[0]] = voxel[1]
            corrout[voxel[0], :] = voxel[2]
            theglobalmaxlist.append(voxel[3] + 0)
            volumetotal += 1
        del data_out
    else:
        for vox in range(0, inputshape[0]):
            if (vox % reportstep == 0 or vox == inputshape[0] - 1) and optiondict['showprogressbar']:
                tide_util.progressbar(vox + 1, inputshape[0], label='Percent complete')
            dummy, meanval[vox], corrout[vox, :], theglobalmax = _procOneVoxelCorrelation(vox,
                                                                                          thetc,
                                                                                          optiondict,
                                                                                          fmri_x,
                                                                                          fmridata[vox, :],
                                                                                          os_fmri_x,
                                                                                          oversampfreq,
                                                                                          corrorigin,
                                                                                          lagmininpts,
                                                                                          lagmaxinpts,
                                                                                          ncprefilter,
                                                                                          referencetc,
                                                                                          rt_floatset=rt_floatset,
                                                                                          rt_floattype=rt_floattype
                                                                                          )
            theglobalmaxlist.append(theglobalmax + 0)
            volumetotal += 1
    print('\nCorrelation performed on ' + str(volumetotal) + ' voxels')

    # garbage collect
    collected = gc.collect()
    print("Garbage collector: collected %d objects." % collected)

    return volumetotal, theglobalmaxlist
Beispiel #22
0
def getNullDistributionDatax(
    rawtimecourse,
    Fs,
    theCorrelator,
    thefitter,
    despeckle_thresh=5.0,
    fixdelay=False,
    fixeddelayvalue=0.0,
    numestreps=0,
    nprocs=1,
    alwaysmultiproc=False,
    showprogressbar=True,
    chunksize=1000,
    permutationmethod="shuffle",
    rt_floatset=np.float64,
    rt_floattype="float64",
):
    r"""Calculate a set of null correlations to determine the distribution of correlation values.  This can
    be used to find the spurious correlation threshold

    Parameters
    ----------
    rawtimecourse : 1D numpy array
        The test regressor.  This should be filtered to the desired bandwidth, but NOT windowed.
        :param rawtimecourse:

    corrscale: 1D numpy array
        The time axis of the cross correlation function.

    filterfunc: function
        This is a preconfigured NoncausalFilter function which is used to filter data to the desired bandwidth

    Fs: float
        The sample frequency of rawtimecourse, in Hz

    corrorigin: int
        The bin number in the correlation timescale corresponding to 0.0 seconds delay

    negbins: int
        The lower edge of the search range for correlation peaks, in number of bins below corrorigin

    posbins: int
        The upper edge of the search range for correlation peaks, in number of bins above corrorigin

    """

    inputshape = np.asarray([numestreps])
    normalizedreftc = theCorrelator.ncprefilter.apply(
        Fs,
        tide_math.corrnormalize(
            theCorrelator.reftc,
            windowfunc="None",
            detrendorder=theCorrelator.detrendorder,
        ),
    )
    rawtcfft_r, rawtcfft_ang = tide_filt.polarfft(normalizedreftc)
    if nprocs > 1 or alwaysmultiproc:
        # define the consumer function here so it inherits most of the arguments
        def nullCorrelation_consumer(inQ, outQ):
            while True:
                try:
                    # get a new message
                    val = inQ.get()

                    # this is the 'TERM' signal
                    if val is None:
                        break

                    # process and send the data
                    outQ.put(
                        _procOneNullCorrelationx(
                            normalizedreftc,
                            rawtcfft_r,
                            rawtcfft_ang,
                            Fs,
                            theCorrelator,
                            thefitter,
                            despeckle_thresh=despeckle_thresh,
                            fixdelay=fixdelay,
                            fixeddelayvalue=fixeddelayvalue,
                            permutationmethod=permutationmethod,
                            rt_floatset=rt_floatset,
                            rt_floattype=rt_floattype,
                        ))

                except Exception as e:
                    print("error!", e)
                    break

        data_out = tide_multiproc.run_multiproc(
            nullCorrelation_consumer,
            inputshape,
            None,
            nprocs=nprocs,
            showprogressbar=showprogressbar,
            chunksize=chunksize,
        )

        # unpack the data
        corrlist = np.asarray(data_out, dtype=rt_floattype)
    else:
        corrlist = np.zeros((numestreps), dtype=rt_floattype)

        for i in range(0, numestreps):
            # make a shuffled copy of the regressors
            if permutationmethod == "shuffle":
                permutedtc = np.random.permutation(normalizedreftc)
            elif permutationmethod == "phaserandom":
                permutedtc = tide_filt.ifftfrompolar(
                    rawtcfft_r, np.random.permutation(rawtcfft_ang))
            else:
                print("illegal shuffling method")
                sys.exit()

            # crosscorrelate with original, fit, and return the maximum value, and add it to the list
            thexcorr = _procOneNullCorrelationx(
                normalizedreftc,
                rawtcfft_r,
                rawtcfft_ang,
                Fs,
                theCorrelator,
                thefitter,
                despeckle_thresh=despeckle_thresh,
                fixdelay=fixdelay,
                fixeddelayvalue=fixeddelayvalue,
                permutationmethod=permutationmethod,
                rt_floatset=rt_floatset,
                rt_floattype=rt_floattype,
            )
            corrlist[i] = thexcorr

            # progress
            if showprogressbar:
                tide_util.progressbar(i + 1,
                                      numestreps,
                                      label="Percent complete")

        # jump to line after progress bar
        print()

    # return the distribution data
    numnonzero = len(np.where(corrlist != 0.0)[0])
    print("{:d} non-zero correlations out of {:d} ({:.2f}%)".format(
        numnonzero, len(corrlist), 100.0 * numnonzero / len(corrlist)))
    return corrlist