Beispiel #1
0
async def test_should_not_retrain_core(default_domain_path: Text,
                                       tmp_path: Path):
    # Don't use `default_stories_file` as checkpoints currently break fingerprinting
    story_file = tmp_path / "simple_story.yml"
    story_file.write_text("""
stories:
- story: test_story
  steps:
  - intent: greet
  - action: utter_greet
    """)
    trained_model = await train_core_async(default_domain_path,
                                           DEFAULT_STACK_CONFIG,
                                           str(story_file), str(tmp_path))

    importer = TrainingDataImporter.load_from_config(
        DEFAULT_STACK_CONFIG,
        default_domain_path,
        training_data_paths=[str(story_file)])

    new_fingerprint = await model.model_fingerprint(importer)

    result = model.should_retrain(new_fingerprint, trained_model, tmp_path)

    assert not result.should_retrain_core()
Beispiel #2
0
def test_should_retrain(trained_model, fingerprint):
    old_model = set_fingerprint(trained_model, fingerprint["old"])

    retrain_core, retrain_nlu = should_retrain(fingerprint["new"], old_model,
                                               tempfile.mkdtemp())

    assert retrain_core == fingerprint["retrain_core"]
    assert retrain_nlu == fingerprint["retrain_nlu"]
Beispiel #3
0
def test_should_retrain(trained_rasa_model: Text, fingerprint: Fingerprint):
    old_model = set_fingerprint(trained_rasa_model, fingerprint["old"])

    retrain = should_retrain(fingerprint["new"], old_model, tempfile.mkdtemp())

    assert retrain.should_retrain_core() == fingerprint["retrain_core"]
    assert retrain.should_retrain_nlg() == fingerprint["retrain_nlg"]
    assert set(retrain.should_retrain_nlu()) == set(fingerprint["retrain_nlu"])
Beispiel #4
0
def test_should_retrain(trained_rasa_model: Text, fingerprint: Fingerprint,
                        tmp_path: Path):
    old_model = set_fingerprint(trained_rasa_model, fingerprint["old"],
                                tmp_path)

    retrain = should_retrain(fingerprint["new"], old_model, str(tmp_path))

    assert retrain.should_retrain_core() == fingerprint["retrain_core"]
    assert retrain.should_retrain_nlg() == fingerprint["retrain_nlg"]
    assert retrain.should_retrain_nlu() == fingerprint["retrain_nlu"]
Beispiel #5
0
def test_should_not_retrain_core(domain_path: Text, tmp_path: Path,
                                 stack_config_path: Text):
    # Don't use `stories_path` as checkpoints currently break fingerprinting
    story_file = tmp_path / "simple_story.yml"
    story_file.write_text("""
stories:
- story: test_story
  steps:
  - intent: greet
  - action: utter_greet
    """)
    trained_model = train_core(domain_path, stack_config_path, str(story_file),
                               str(tmp_path))

    importer = TrainingDataImporter.load_from_config(
        stack_config_path, domain_path, training_data_paths=[str(story_file)])

    new_fingerprint = model.model_fingerprint(importer)

    result = model.should_retrain(new_fingerprint, trained_model, tmp_path)

    assert not result.should_retrain_core()
Beispiel #6
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    dry_run: bool,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    core_additional_arguments: Optional[Dict] = None,
    nlu_additional_arguments: Optional[Dict] = None,
    model_to_finetune: Optional[Text] = None,
    finetuning_epoch_fraction: float = 1.0,
) -> TrainingResult:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        dry_run: If `True` then no training will be done, and the information about
            whether the training needs to be done will be printed.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
            with the model.
        core_additional_arguments: Additional training parameters for core training.
        nlu_additional_arguments: Additional training parameters forwarded to training
            method of each NLU component.
        model_to_finetune: Optional path to a model which should be finetuned or
            a directory in case the latest trained model should be used.
        finetuning_epoch_fraction: The fraction currently specified training epochs
            in the model configuration which should be used for finetuning.

    Returns:
        An instance of `TrainingResult`.
    """
    stories, nlu_data = await asyncio.gather(file_importer.get_stories(),
                                             file_importer.get_nlu_data())

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)

    fingerprint_comparison = model.should_retrain(
        new_fingerprint, old_model, train_path, force_training=force_training)

    if dry_run:
        code, texts = dry_run_result(fingerprint_comparison)
        for text in texts:
            print_warning(text) if code > 0 else print_success(text)
        return TrainingResult(code=code)

    if nlu_data.has_e2e_examples():
        rasa.shared.utils.common.mark_as_experimental_feature(
            "end-to-end training")

    if stories.is_empty() and nlu_data.contains_no_pure_nlu_data():
        rasa.shared.utils.cli.print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return TrainingResult()

    if stories.is_empty():
        rasa.shared.utils.cli.print_warning(
            "No stories present. Just a Rasa NLU model will be trained.")
        trained_model = await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=nlu_additional_arguments,
            model_to_finetune=model_to_finetune,
            finetuning_epoch_fraction=finetuning_epoch_fraction,
        )
        return TrainingResult(model=trained_model)

    # We will train nlu if there are any nlu example, including from e2e stories.
    if nlu_data.contains_no_pure_nlu_data(
    ) and not nlu_data.has_e2e_examples():
        rasa.shared.utils.cli.print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        trained_model = await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            additional_arguments=core_additional_arguments,
            model_to_finetune=model_to_finetune,
            finetuning_epoch_fraction=finetuning_epoch_fraction,
        )

        return TrainingResult(model=trained_model)

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)

    if not force_training:
        fingerprint_comparison = model.should_retrain(
            new_fingerprint,
            old_model,
            train_path,
            has_e2e_examples=nlu_data.has_e2e_examples(),
        )
    else:
        fingerprint_comparison = FingerprintComparisonResult(
            force_training=True)

    if fingerprint_comparison.is_training_required():
        async with telemetry.track_model_training(
                file_importer,
                model_type="rasa",
        ):
            await _do_training(
                file_importer,
                output_path=output_path,
                train_path=train_path,
                fingerprint_comparison_result=fingerprint_comparison,
                fixed_model_name=fixed_model_name,
                persist_nlu_training_data=persist_nlu_training_data,
                core_additional_arguments=core_additional_arguments,
                nlu_additional_arguments=nlu_additional_arguments,
                old_model_zip_path=old_model,
                model_to_finetune=model_to_finetune,
                finetuning_epoch_fraction=finetuning_epoch_fraction,
            )
        trained_model = model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )
        return TrainingResult(model=trained_model)

    rasa.shared.utils.cli.print_success(
        "Nothing changed. You can use the old model stored at '{}'."
        "".format(os.path.abspath(old_model)))
    return TrainingResult(model=old_model)
Beispiel #7
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    kwargs: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
        fixed_model_name: Name of model to be stored.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    stories = await file_importer.get_stories()
    nlu_data = await file_importer.get_nlu_data()

    if stories.is_empty() and nlu_data.is_empty():
        print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return

    if stories.is_empty():
        print_warning(
            "No stories present. Just a Rasa NLU model will be trained.")
        return await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
        )

    if nlu_data.is_empty():
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        return await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)
    fingerprint_comparison = FingerprintComparisonResult(
        force_training=force_training)
    if not force_training:
        fingerprint_comparison = model.should_retrain(new_fingerprint,
                                                      old_model, train_path)

    if fingerprint_comparison.is_training_required():
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            fingerprint_comparison_result=fingerprint_comparison,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            kwargs=kwargs,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Beispiel #8
0
async def train_async(
    domain: Union[Domain, Text],
    config: Text,
    training_files: Optional[Union[Text, List[Text]]],
    output_path: Text = DEFAULT_MODELS_PATH,
    force_training: bool = False,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU).

    Args:
        domain: Path to the domain file.
        config: Path to the config for Core and NLU.
        training_files: Paths to the training data for Core and NLU.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        uncompress: If `True` the model will not be compressed.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    config = _get_valid_config(config, CONFIG_MANDATORY_KEYS)
    train_path = tempfile.mkdtemp()

    skill_imports = SkillSelector.load(config)
    try:
        domain = Domain.load(domain, skill_imports)
    except InvalidDomain as e:
        print_error(
            "Could not load domain due to: '{}'. To specify a valid domain path use "
            "the '--domain' argument.".format(e))
        return None

    story_directory, nlu_data_directory = data.get_core_nlu_directories(
        training_files, skill_imports)
    new_fingerprint = model.model_fingerprint(config, domain,
                                              nlu_data_directory,
                                              story_directory)

    dialogue_data_not_present = not os.listdir(story_directory)
    nlu_data_not_present = not os.listdir(nlu_data_directory)

    if dialogue_data_not_present and nlu_data_not_present:
        print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return

    if dialogue_data_not_present:
        print_warning(
            "No dialogue data present. Just a Rasa NLU model will be trained.")
        return _train_nlu_with_validated_data(
            config=config,
            nlu_data_directory=nlu_data_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
        )

    if nlu_data_not_present:
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        return await _train_core_with_validated_data(
            domain=domain,
            config=config,
            story_directory=story_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
            kwargs=kwargs,
        )

    old_model = model.get_latest_model(output_path)
    retrain_core, retrain_nlu = should_retrain(new_fingerprint, old_model,
                                               train_path)

    if force_training or retrain_core or retrain_nlu:
        await _do_training(
            domain=domain,
            config=config,
            output_path=output_path,
            train_path=train_path,
            nlu_data_directory=nlu_data_directory,
            story_directory=story_directory,
            force_training=force_training,
            retrain_core=retrain_core,
            retrain_nlu=retrain_nlu,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
            kwargs=kwargs,
        )

        return _package_model(
            new_fingerprint=new_fingerprint,
            output_path=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Beispiel #9
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    kwargs: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        domain: Path to the domain file.
        config: Path to the config for Core and NLU.
        train_path: Directory in which to train the model.
        nlu_data_directory: Path to NLU training files.
        story_directory: Path to Core training files.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    new_fingerprint = await model.model_fingerprint(file_importer)

    stories = await file_importer.get_stories()
    nlu_data = await file_importer.get_nlu_data()

    if stories.is_empty() and nlu_data.is_empty():
        print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return

    if stories.is_empty():
        print_warning(
            "No stories present. Just a Rasa NLU model will be trained.")
        return await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name)

    if nlu_data.is_empty():
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        return await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )

    old_model = model.get_latest_model(output_path)
    retrain_core, retrain_nlu = model.should_retrain(new_fingerprint,
                                                     old_model, train_path)

    if force_training or retrain_core or retrain_nlu:
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            force_training=force_training,
            retrain_core=retrain_core,
            retrain_nlu=retrain_nlu,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Beispiel #10
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    kwargs: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    new_fingerprint = await model.model_fingerprint(file_importer)

    stories = await file_importer.get_stories()
    nlu_data = await file_importer.get_nlu_data()

    # if stories.is_empty() and nlu_data.is_empty():
    #     print_error(
    #         "No training data given. Please provide stories and NLU data in "
    #         "order to train a Rasa model using the '--data' argument."
    #     )
    #     return

    # if stories.is_empty():
    #     print_warning("No stories present. Just a Rasa NLU model will be trained.")
    #     return await _train_nlu_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         persist_nlu_training_data=persist_nlu_training_data,
    #     )

    # if nlu_data.is_empty():
    #     print_warning("No NLU data present. Just a Rasa Core model will be trained.")
    #     return await _train_core_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         kwargs=kwargs,
    #     )

    old_model = model.get_latest_model(output_path)
    retrain_core, retrain_nlu = model.should_retrain(new_fingerprint,
                                                     old_model, train_path)

    # bf mod
    domain = await file_importer.get_domain()
    core_untrainable = domain.is_empty() or stories.is_empty()
    nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()]
    retrain_core = retrain_core and not core_untrainable

    if retrain_nlu is True:
        from rasa.model import FINGERPRINT_NLU_DATA_KEY
        possible_retrains = new_fingerprint[FINGERPRINT_NLU_DATA_KEY].keys()
    else:
        possible_retrains = retrain_nlu

    if core_untrainable:
        print_color(
            "Skipping Core training since domain or stories are empty.",
            color=bcolors.OKBLUE)
    for lang in nlu_untrainable:
        print_color(
            "No NLU data found for language <{}>, skipping training...".format(
                lang),
            color=bcolors.OKBLUE)
    retrain_nlu = [l for l in possible_retrains if l not in nlu_untrainable]
    # /bf mod

    if force_training or retrain_core or retrain_nlu:
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            force_training=force_training,
            retrain_core=retrain_core,
            retrain_nlu=retrain_nlu,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            kwargs=kwargs,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Beispiel #11
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    dry_run: bool,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    core_additional_arguments: Optional[Dict] = None,
    nlu_additional_arguments: Optional[Dict] = None,
) -> TrainingResult:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        dry_run: If `True` then no training will be done, and the information about
            whether the training needs to be done will be printed.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
            with the model.
        core_additional_arguments: Additional training parameters for core training.
        nlu_additional_arguments: Additional training parameters forwarded to training
            method of each NLU component.

    Returns:
        An instance of `TrainingResult`.
    """
    stories, nlu_data = await asyncio.gather(file_importer.get_stories(),
                                             file_importer.get_nlu_data())

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)

    fingerprint_comparison = model.should_retrain(new_fingerprint, old_model,
                                                  train_path, force_training)

    if dry_run:
        code, texts = dry_run_result(fingerprint_comparison)
        for text in texts:
            print_warning(text) if code > 0 else print_success(text)
        return TrainingResult(code=code)

    if stories.is_empty() and nlu_data.can_train_nlu_model():
        print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return TrainingResult()

    if stories.is_empty():
        print_warning(
            "No stories present. Just a Rasa NLU model will be trained.")
        trained_model = await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=nlu_additional_arguments,
        )
        return TrainingResult(model=trained_model)

    if nlu_data.can_train_nlu_model():
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        trained_model = await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            fixed_model_name=fixed_model_name,
            additional_arguments=core_additional_arguments,
        )
        return TrainingResult(model=trained_model)

    if fingerprint_comparison.is_training_required():
        async with telemetry.track_model_training(file_importer,
                                                  model_type="rasa"):
            await _do_training(
                file_importer,
                output_path=output_path,
                train_path=train_path,
                fingerprint_comparison_result=fingerprint_comparison,
                fixed_model_name=fixed_model_name,
                persist_nlu_training_data=persist_nlu_training_data,
                core_additional_arguments=core_additional_arguments,
                nlu_additional_arguments=nlu_additional_arguments,
                old_model_zip_path=old_model,
            )
        trained_model = model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )
        return TrainingResult(model=trained_model)

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return TrainingResult(model=old_model)
Beispiel #12
0
async def _train_async_internal(
    domain: Union[Domain, Text],
    config: Text,
    train_path: Text,
    nlu_data_directory: Text,
    story_directory: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    kwargs: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        domain: Path to the domain file.
        config: Path to the config for Core and NLU.
        train_path: Directory in which to train the model.
        nlu_data_directory: Path to NLU training files.
        story_directory: Path to Core training files.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    new_fingerprint = model.model_fingerprint(config, domain,
                                              nlu_data_directory,
                                              story_directory)

    dialogue_data_not_present = not os.listdir(story_directory)
    nlu_data_not_present = not os.listdir(nlu_data_directory)

    if dialogue_data_not_present and nlu_data_not_present:
        print_error(
            "No training data given. Please provide stories and NLU data in "
            "order to train a Rasa model using the '--data' argument.")
        return

    if dialogue_data_not_present:
        print_warning(
            "No dialogue data present. Just a Rasa NLU model will be trained.")
        return _train_nlu_with_validated_data(
            config=config,
            nlu_data_directory=nlu_data_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
        )

    if nlu_data_not_present:
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        return await _train_core_with_validated_data(
            domain=domain,
            config=config,
            story_directory=story_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )

    old_model = model.get_latest_model(output_path)
    retrain_core, retrain_nlu = should_retrain(new_fingerprint, old_model,
                                               train_path)

    if force_training or retrain_core or retrain_nlu:
        await _do_training(
            domain=domain,
            config=config,
            output_path=output_path,
            train_path=train_path,
            nlu_data_directory=nlu_data_directory,
            story_directory=story_directory,
            force_training=force_training,
            retrain_core=retrain_core,
            retrain_nlu=retrain_nlu,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )

        return _package_model(
            new_fingerprint=new_fingerprint,
            output_path=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Beispiel #13
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    additional_arguments: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
        fixed_model_name: Name of model to be stored.
        additional_arguments: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """

    stories, nlu_data = await asyncio.gather(file_importer.get_stories(),
                                             file_importer.get_nlu_data())

    # if stories.is_empty() and nlu_data.is_empty():
    #     print_error(
    #         "No training data given. Please provide stories and NLU data in "
    #         "order to train a Rasa model using the '--data' argument."
    #     )
    #     return

    # if nlu_data.is_empty():
    #     print_warning("No NLU data present. Just a Rasa Core model will be trained.")
    #     return await _train_core_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         additional_arguments=additional_arguments,
    #     )

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)
    fingerprint_comparison = FingerprintComparisonResult(
        force_training=force_training)
    if not force_training:
        fingerprint_comparison = model.should_retrain(new_fingerprint,
                                                      old_model, train_path)

    # bf mod >
    if fingerprint_comparison.nlu == True:  # replace True with list of all langs
        fingerprint_comparison.nlu = list(
            new_fingerprint.get("nlu-config", {}).keys())
    domain = await file_importer.get_domain()
    core_untrainable = domain.is_empty() or stories.is_empty()
    nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()]
    fingerprint_comparison.core = fingerprint_comparison.core and not core_untrainable
    fingerprint_comparison.nlu = [
        l for l in fingerprint_comparison.nlu if l not in nlu_untrainable
    ]

    if core_untrainable:
        print_color(
            "Skipping Core training since domain or stories are empty.",
            color=bcolors.OKBLUE)
    for lang in nlu_untrainable:
        print_color(
            "No NLU data found for language <{}>, skipping training...".format(
                lang),
            color=bcolors.OKBLUE)
    # </ bf mod

    if fingerprint_comparison.is_training_required():
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            fingerprint_comparison_result=fingerprint_comparison,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=additional_arguments,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model