Beispiel #1
0
    async def convert_and_write(cls, source_path: Path, output_path: Path) -> None:
        """Converts the given training data file and saves it to the output directory.

        Args:
            source_path: Path to the training data file.
            output_path: Path to the output directory.
        """
        reader = NLGMarkdownReader()
        writer = RasaYAMLWriter()

        output_nlg_path = cls.generate_path_for_converted_training_data_file(
            source_path, output_path
        )

        training_data = reader.read(source_path)
        converted_responses = {}

        for response_name, examples in training_data.responses.items():
            new_response_name = cls._normalize_response_name(response_name)
            converted_responses[new_response_name] = examples

        converted_training_data = TrainingData(responses=converted_responses)
        writer.dump(output_nlg_path, converted_training_data)

        print_success(f"Converted NLG file: '{source_path}' >> '{output_nlg_path}'.")
    def convert_and_write(cls, source_path: Path, output_path: Path) -> None:
        """Converts the given training data file and saves it to the output directory.

        Args:
            source_path: Path to the training data file.
            output_path: Path to the output directory.
        """
        reader = NLGMarkdownReader()
        writer = RasaYAMLWriter()

        output_nlg_path = cls.generate_path_for_converted_training_data_file(
            source_path, output_path)

        yaml_training_data = reader.read(source_path)
        writer.dump(output_nlg_path, yaml_training_data)

        print_success(
            f"Converted NLG file: '{source_path}' >> '{output_nlg_path}'.")