Beispiel #1
0
    def read_from_json(self, js: Dict[Text, Any], **_: Any) -> "TrainingData":
        """Loads training data stored in the rasa NLU data format."""
        import rasa.shared.nlu.training_data.schemas.data_schema as schema
        import rasa.shared.utils.validation as validation_utils

        validation_utils.validate_training_data(js,
                                                schema.rasa_nlu_data_schema())

        data = js["rasa_nlu_data"]
        common_examples = data.get("common_examples", [])
        entity_synonyms = data.get("entity_synonyms", [])
        regex_features = data.get("regex_features", [])
        lookup_tables = data.get("lookup_tables", [])

        entity_synonyms = transform_entity_synonyms(entity_synonyms)

        training_examples = []
        for ex in common_examples:
            # taking care of custom entries
            msg = Message.build(
                text=ex.pop(TEXT, ""),
                intent=ex.pop(INTENT, None),
                entities=ex.pop(ENTITIES, None),
                **ex,
            )
            training_examples.append(msg)

        return TrainingData(training_examples, entity_synonyms, regex_features,
                            lookup_tables)
Beispiel #2
0
    def _read_entities(entity_js, examples_js) -> "TrainingData":
        entity_synonyms = transform_entity_synonyms(examples_js)

        name = entity_js.get("name")
        lookup_tables = DialogflowReader._extract_lookup_tables(
            name, examples_js)
        return TrainingData([], entity_synonyms, [], lookup_tables)
Beispiel #3
0
    def _read_entities(
        entity: Dict[Text, Any], examples: List[Dict[Text, Any]]
    ) -> "TrainingData":
        entity_synonyms = transform_entity_synonyms(examples)

        if entity["isRegexp"]:
            regex_features = DialogflowReader._extract_regex_features(entity, examples)
            return TrainingData([], entity_synonyms, regex_features, [])
        else:
            lookup_tables = DialogflowReader._extract_lookup_tables(entity, examples)
            return TrainingData([], entity_synonyms, [], lookup_tables)