Beispiel #1
0
def train_comparison_models(story_filename,
                            domain,
                            output_path=None,
                            exclusion_percentages=None,
                            policy_configs=None,
                            runs=None,
                            dump_stories=False,
                            kwargs=None):
    """Train multiple models for comparison of policies"""

    for r in range(cmdline_args.runs):
        logging.info("Starting run {}/{}".format(r + 1, cmdline_args.runs))
        for i in exclusion_percentages:
            current_round = cmdline_args.percentages.index(i) + 1
            for policy_config in policy_configs:
                policies = config.load(policy_config)
                if len(policies) > 1:
                    raise ValueError("You can only specify one policy per "
                                     "model for comparison")
                policy_name = type(policies[0]).__name__
                output = os.path.join(output_path, 'run_' + str(r + 1),
                                      policy_name + str(current_round))

                logging.info("Starting to train {} round {}/{}"
                             " with {}% exclusion".format(
                                 policy_name, current_round,
                                 len(exclusion_percentages), i))

                train_dialogue_model(domain,
                                     stories,
                                     output,
                                     policy_config=policy_config,
                                     exclusion_percentage=i,
                                     kwargs=kwargs,
                                     dump_stories=dump_stories)
Beispiel #2
0
def visualize(config_path: Text, domain_path: Text, stories_path: Text,
              nlu_data_path: Text, output_path: Text, max_history: int):
    from rasa_core.agent import Agent
    from rasa_core import config

    policies = config.load(config_path)

    agent = Agent(domain_path, policies=policies)

    # this is optional, only needed if the `/greet` type of
    # messages in the stories should be replaced with actual
    # messages (e.g. `hello`)
    if nlu_data_path is not None:
        from rasa_nlu.training_data import load_data

        nlu_data_path = load_data(nlu_data_path)
    else:
        nlu_data_path = None

    logger.info("Starting to visualize stories...")
    agent.visualize(stories_path,
                    output_path,
                    max_history,
                    nlu_training_data=nlu_data_path)

    full_output_path = "file://{}".format(os.path.abspath(output_path))
    logger.info(
        "Finished graph creation. Saved into {}".format(full_output_path))

    import webbrowser
    webbrowser.open(full_output_path)
Beispiel #3
0
def train_dialogue_model(domain_file,
                         stories_file,
                         output_path,
                         interpreter=None,
                         endpoints=AvailableEndpoints(),
                         dump_stories=False,
                         policy_config=None,
                         exclusion_percentage=None,
                         kwargs=None):
    if not kwargs:
        kwargs = {}

    policies = config.load(policy_config)

    agent = Agent(domain_file,
                  generator=endpoints.nlg,
                  action_endpoint=endpoints.action,
                  interpreter=interpreter,
                  policies=policies)

    data_load_args, kwargs = utils.extract_args(
        kwargs, {
            "use_story_concatenation", "unique_last_num_states",
            "augmentation_factor", "remove_duplicates", "debug_plots"
        })

    training_data = agent.load_data(stories_file,
                                    exclusion_percentage=exclusion_percentage,
                                    **data_load_args)
    agent.train(training_data, **kwargs)
    agent.persist(output_path, dump_stories)

    return agent
Beispiel #4
0
def train_dialogue_model(domain_file,
                         stories_file,
                         output_path,
                         interpreter=None,
                         endpoints=AvailableEndpoints(),
                         max_history=None,
                         dump_flattened_stories=False,
                         policy_config=None,
                         kwargs=None):
    if not kwargs:
        kwargs = {}

    fallback_args, kwargs = utils.extract_args(
        kwargs, {"nlu_threshold", "core_threshold", "fallback_action_name"})

    policies = config.load(policy_config, fallback_args, max_history)

    agent = Agent(domain_file,
                  generator=endpoints.nlg,
                  action_endpoint=endpoints.action,
                  interpreter=interpreter,
                  policies=policies)

    data_load_args, kwargs = utils.extract_args(
        kwargs, {
            "use_story_concatenation", "unique_last_num_states",
            "augmentation_factor", "remove_duplicates", "debug_plots"
        })

    training_data = agent.load_data(stories_file, **data_load_args)
    agent.train(training_data, **kwargs)
    agent.persist(output_path, dump_flattened_stories)

    return agent
Beispiel #5
0
def train_core(domain_file, model_path, training_data_file, policy_config):
    logging.basicConfig(filename=logfile, level=logging.DEBUG)
    agent = Agent(domain_file, policies=config.load(policy_config))
    training_data = agent.load_data(training_data_file)
    agent.train(training_data)
    agent.persist(model_path)
    return agent
Beispiel #6
0
def train(domain_file: Text,
          stories_file: Text,
          output_path: Text,
          interpreter: Optional[NaturalLanguageInterpreter] = None,
          endpoints: AvailableEndpoints = AvailableEndpoints(),
          dump_stories: bool = False,
          policy_config: Text = None,
          exclusion_percentage: int = None,
          kwargs: Optional[Dict] = None):
    from rasa_core.agent import Agent

    if not kwargs:
        kwargs = {}

    policies = config.load(policy_config)

    agent = Agent(domain_file,
                  generator=endpoints.nlg,
                  action_endpoint=endpoints.action,
                  interpreter=interpreter,
                  policies=policies)

    data_load_args, kwargs = utils.extract_args(
        kwargs, {
            "use_story_concatenation", "unique_last_num_states",
            "augmentation_factor", "remove_duplicates", "debug_plots"
        })

    training_data = agent.load_data(stories_file,
                                    exclusion_percentage=exclusion_percentage,
                                    **data_load_args)
    agent.train(training_data, **kwargs)
    agent.persist(output_path, dump_stories)

    return agent
Beispiel #7
0
def run_weather_online(input_channel, interpreter,domain_file="weather_domain.yml",training_data_file='data/stories.md'):

    policies2 = policy_config.load("config.yml")
    agent = Agent("weather_domain.yml", policies=policies2)
    data = asyncio.run(agent.load_data(training_data_file))
    agent.train(data)
    return agent
Beispiel #8
0
def run_weather_online(interpreter,
                          domain_file="weather_domain.yml",
                          training_data_file='data/stories.md'):
    policies2 = policy_config.load("config.yml")
    action_endpoint = "endpoint.yml"					  
    agent = Agent(domain_file,policies=policies2,interpreter=interpreter,action_endpoint=action_endpoint)
    				  
    data = asyncio.run(agent.load_data(training_data_file))			   
    agent.train(data)
    interactive.run_interactive_learning(agent,training_data_file)
    return agent
Beispiel #9
0
def train_nlu():
    from rasa_nlu.training_data import load_data
    from rasa_nlu import config
    from rasa_nlu.model import Trainer

    training_data = load_data('data/rasa_dataset_training.json')
    trainer = Trainer(config.load("configs/nlu_embedding_config.yml"))
    trainer.train(training_data)
    model_directory = trainer.persist('models/nlu/',
                                      fixed_model_name="current")

    return model_directory
Beispiel #10
0
def train_dialogue_transformer(domain_file="mobile_domain.yml",
                               model_path="models/dialogue_transformer",
                               training_data_file="data/mobile_edit_story.md"):
    # 通过加载yml配置文件方式配置policy
    policies = config.load('./policy/attention_policy.yml')
    agent = Agent(domain_file,
                  policies=policies)

    training_data = agent.load_data(training_data_file)
    agent.train(
        training_data,
        validation_split=0.2
    )

    agent.persist(model_path)
    return agent
Beispiel #11
0
def test_agent_and_persist():
    policies = config.load("policies.yml")
    policies[0] = KerasPolicy(epochs=2)  # Keep training times low

    agent = Agent("domain.yml", policies=policies)
    training_data = agent.load_data("data/stories.md")
    agent.train(training_data, validation_split=0.0)
    agent.persist("./tests/models/dialogue")

    loaded = Agent.load("./tests/models/dialogue")

    assert agent.handle_text("/greet") is not None
    assert loaded.domain.action_names == agent.domain.action_names
    assert loaded.domain.intents == agent.domain.intents
    assert loaded.domain.entities == agent.domain.entities
    assert loaded.domain.templates == agent.domain.templates
Beispiel #12
0
    utils.add_logging_option_arguments(parser)

    cli.arguments.add_config_arg(parser, nargs=1)
    cli.arguments.add_domain_arg(parser)
    cli.arguments.add_model_and_story_group(parser,
                                            allow_pretrained_model=False)
    return parser


if __name__ == '__main__':
    arg_parser = create_argument_parser()
    cmdline_arguments = arg_parser.parse_args()

    utils.configure_colored_logging(cmdline_arguments.loglevel)

    policies = config.load(cmdline_arguments.config[0])

    agent = Agent(cmdline_arguments.domain, policies=policies)

    # this is optional, only needed if the `/greet` type of
    # messages in the stories should be replaced with actual
    # messages (e.g. `hello`)
    if cmdline_arguments.nlu_data is not None:
        from rasa_nlu.training_data import load_data

        nlu_data = load_data(cmdline_arguments.nlu_data)
    else:
        nlu_data = None

    stories = cli.stories_from_cli_args(cmdline_arguments)
Beispiel #13
0
import logging
from rasa_core import training
from rasa_core.actions import Action
from rasa_core.agent import Agent
from rasa_core.domain import Domain
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy
from rasa_core.featurizers import MaxHistoryTrackerFeaturizer, BinarySingleStateFeaturizer
from rasa_core.interpreter import RegexInterpreter
from rasa_core.interpreter import RasaNLUInterpreter
from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy, FormPolicy
fallback = FallbackPolicy(fallback_action_name="utter_default",
                          core_threshold=0.2,
                          nlu_threshold=0.1)
from rasa_core import config as policy_config
policies = policy_config.load("policy.yml")

# - name: KerasPolicy
# epochs: 100
# max_history: 3
# - name: MemoizationPolicy
# max_history: 3
# - name: FallbackPolicy
# nlu_threshold: 0.1
# core_threshold: 0.2
# fallback_action_name: 'utter_default'
# - name: FormPolicy


# Function
#------------
Beispiel #14
0
def test_load_config(filename):
    loaded = load(filename, None, None)
    assert len(loaded) == 2
    assert isinstance(loaded[0], MemoizationPolicy)
    assert isinstance(loaded[1], ExamplePolicy)
import logging

from rasa_core.agent import Agent
from rasa_core import config as policy_config
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy

if __name__ == '__main__':
    logging.basicConfig(level='INFO')

    model_path = './models/dialogue'

    policies = policy_config.load("./policies.yml")

    agent = Agent('chat_domain.yml', policies=policies)

    training_data_file = agent.load_data('./stories.md')

    agent.train(training_data_file)
    agent.persist(model_path)
Beispiel #16
0
def train_core(domain_file, model_path, training_data_file, policy_config):
    agent = Agent(domain_file, policies=config.load(policy_config))
    training_data = agent.load_data(training_data_file)
    agent.train(training_data)
    agent.persist(model_path)
    return agent