def setUp(self):
        self.windows = [Box.make_square(0, 0, 10), Box.make_square(0, 10, 10)]
        self.label_arr0 = np.random.choice([1, 2], (10, 10))
        self.label_arr1 = np.random.choice([1, 2], (10, 10))

        def label_fn(window):
            if window == self.windows[0]:
                return self.label_arr0.copy()
            elif window == self.windows[1]:
                return self.label_arr1.copy()
            else:
                raise ValueError('Unknown window: {}'.format(window))

        self.label_fn = label_fn
        self.labels = SemanticSegmentationLabels(self.windows, label_fn)
Beispiel #2
0
    def predict(self, chips, windows, tmp_dir):
        """Return a prediction for a single chip.

        Args:
            chips: (numpy.ndarray) of shape (1, height, width, nb_channels)
                containing a single imagery chip
            windows: List containing a single (Box) window which is aligned
                with the chip

        Return:
            (SemanticSegmentationLabels) containing predictions
        """
        self.load_model(tmp_dir)

        chips = torch.Tensor(chips).permute((0, 3, 1, 2)) / 255.
        chips = chips.to(self.device)
        model = self.model.eval()

        with torch.no_grad():
            out = model(chips)['out'].cpu()

        def label_fn(_window):
            if _window == windows[0]:
                return out[0].argmax(0).squeeze().numpy()
            else:
                raise ValueError('Trying to get labels for unknown window.')

        return SemanticSegmentationLabels(windows, label_fn)
Beispiel #3
0
    def predict(self, chips: np.ndarray, windows: List[Box],
                tmp_dir: str) -> SemanticSegmentationLabels:
        """Predict using an already-trained DeepLab model.

        Args:
            chips: An np.ndarray containing the image data in a batch of size 1.
            tmp_dir: (str) temporary directory to use

        Returns:
             SemanticSegmentationLabels object with predictions for a single chip
        """
        self.load_model(tmp_dir)
        label_arr = self.sess.run(
            OUTPUT_TENSOR_NAME, feed_dict={INPUT_TENSOR_NAME: [chips[0]]})[0]

        # Return "trivial" instance of SemanticSegmentationLabels that holds a single
        # window and has ability to get labels for that one window.
        def label_fn(_window):
            if _window == windows[0]:
                return label_arr
            else:
                raise ValueError('Trying to get labels for unknown window.')

        labels = SemanticSegmentationLabels(windows, label_fn)

        return labels
Beispiel #4
0
    def predict(self, chips, windows, tmp_dir):
        """Return a prediction for a single chip.

        Args:
            chips: (numpy.ndarray) of shape (1, height, width, nb_channels)
                containing a single imagery chip
            windows: List containing a single (Box) window which is aligned
                with the chip

        Return:
            (SemanticSegmentationLabels) containing predictions
        """
        self.load_model(tmp_dir)

        chip = torch.Tensor(chips[0]).permute((2, 0, 1)) / 255.
        im = Image(chip)
        self.inf_learner.data.single_ds.tfmargs['size'] = self.task_config.predict_chip_size
        self.inf_learner.data.single_ds.tfmargs_y['size'] = self.task_config.predict_chip_size

        if self.train_opts.tta:
            label_arr = tta_predict(self.inf_learner, chip)
        else:
            label_arr = self.inf_learner.predict(im)[1].squeeze().numpy()

        # TODO better explanation
        # Return "trivial" instance of SemanticSegmentationLabels that holds a single
        # window and has ability to get labels for that one window.
        def label_fn(_window):
            if _window == windows[0]:
                return label_arr
            else:
                raise ValueError('Trying to get labels for unknown window.')

        return SemanticSegmentationLabels(windows, label_fn)
Beispiel #5
0
    def get_labels(self,
                   window: Union[Box, None] = None,
                   chip_size=1000) -> SemanticSegmentationLabels:
        """Get labels for a window.

        To avoid running out of memory, if window is None and defaults to using the full
        extent, a set of sub-windows of size chip_size are used which cover the full
        extent with no overlap.

        Args:
             window: Either None or a window given as a Box object. Uses full extent of
                scene if window is not provided.
             chip_size: size of sub-windows to use if full extent is used (in
                units of pixels)
        Returns:
             SemanticSegmentationLabels
        """
        def label_fn(_window):
            raw_labels = self.source.get_raw_chip(_window)

            if self.class_transformer is not None:
                labels = self.class_transformer.rgb_to_class(raw_labels)
            else:
                labels = np.squeeze(raw_labels)

            return labels

        windows = [window]
        if window is None:
            window = self.source.get_extent()
            windows = window.get_windows(chip_size, chip_size)

        return SemanticSegmentationLabels(windows, label_fn)
    def predict(self, chips, windows, tmp_dir):
        """Return predictions for a chip using model.

        Args:
            chips: [[height, width, channels], ...] numpy array of chips
            windows: List of boxes that are the windows aligned with the chips.

        Return:
            Labels object containing predictions
        """
        self.load_model(tmp_dir)
        # TODO get it to work on a whole batch at a time
        chip = torch.Tensor(chips[0]).permute((2, 0, 1)) / 255.
        im = Image(chip)

        label_arr = self.inf_learner.predict(im)[1].squeeze().numpy()

        # Return "trivial" instance of SemanticSegmentationLabels that holds a single
        # window and has ability to get labels for that one window.
        def label_fn(_window):
            if _window == windows[0]:
                return label_arr
            else:
                raise ValueError('Trying to get labels for unknown window.')

        return SemanticSegmentationLabels(windows, label_fn)
class TestSemanticSegmentationLabels(unittest.TestCase):
    def setUp(self):
        self.windows = [Box.make_square(0, 0, 10), Box.make_square(0, 10, 10)]
        self.label_arr0 = np.random.choice([1, 2], (10, 10))
        self.label_arr1 = np.random.choice([1, 2], (10, 10))

        def label_fn(window):
            if window == self.windows[0]:
                return self.label_arr0.copy()
            elif window == self.windows[1]:
                return self.label_arr1.copy()
            else:
                raise ValueError('Unknown window: {}'.format(window))

        self.label_fn = label_fn
        self.labels = SemanticSegmentationLabels(self.windows, label_fn)

    def test_get(self):
        np.testing.assert_array_equal(
            self.labels.get_label_arr(self.windows[0]), self.label_arr0)

    def test_get_with_aoi(self):
        aoi_polygons = [Box.make_square(5, 15, 2).to_shapely()]
        exp_label_arr = self.label_arr1.copy()
        mask = np.zeros(exp_label_arr.shape)
        mask[5:7, 5:7] = 1
        exp_label_arr = exp_label_arr * mask

        labels = self.labels.filter_by_aoi(aoi_polygons)
        label_arr = labels.get_label_arr(self.windows[1])
        np.testing.assert_array_equal(label_arr, exp_label_arr)

        # Set clip_extent
        clip_extent = Box(0, 0, 10, 18)
        label_arr = labels.get_label_arr(self.windows[1],
                                         clip_extent=clip_extent)
        np.testing.assert_array_equal(label_arr, exp_label_arr[:, 0:8])
Beispiel #8
0
    def predict(self, chips, windows, tmp_dir):
        """Return predictions for a chip using model.

        Args:
            chips: [[height, width, channels], ...] numpy array of chips
            windows: List of boxes that are the windows aligned with the chips.

        Return:
            Labels object containing predictions
        """
        self.load_model(tmp_dir)

        chip = torch.Tensor(chips[0]).permute((2, 0, 1)) / 255.
        im = Image(chip)
        self.inf_learner.data.single_ds.tfmargs[
            'size'] = self.task_config.predict_chip_size
        self.inf_learner.data.single_ds.tfmargs_y[
            'size'] = self.task_config.predict_chip_size

        if self.train_opts.tta:
            probs = []
            for k in range(8):
                trans_im = dihedral(Image(chip), k)
                o = self.inf_learner.predict(trans_im)[2]
                # https://forums.fast.ai/t/how-best-to-have-get-preds-or-tta-apply-specified-transforms/40731/9
                o = Image(o)
                if k == 5:
                    o = dihedral(o, 6)
                elif k == 6:
                    o = dihedral(o, 5)
                else:
                    o = dihedral(o, k)
                probs.append(o.data)

            label_arr = torch.stack(probs).mean(0).argmax(0).numpy()
        else:
            label_arr = self.inf_learner.predict(im)[1].squeeze().numpy()

        # Return "trivial" instance of SemanticSegmentationLabels that holds a single
        # window and has ability to get labels for that one window.
        def label_fn(_window):
            if _window == windows[0]:
                return label_arr
            else:
                raise ValueError('Trying to get labels for unknown window.')

        return SemanticSegmentationLabels(windows, label_fn)
    def predict_scene(self, scene, tmp_dir):
        """Predict on a single scene, and return the labels."""
        log.info('Making predictions for scene')
        raster_source = scene.raster_source
        windows = self.get_predict_windows(raster_source.get_extent())

        def label_fn(window):
            chip = raster_source.get_chip(window)
            labels = self.backend.predict([chip], [window], tmp_dir)
            label_arr = labels.get_label_arr(window)

            # Set NODATA pixels in imagery to predicted value of 0 (ie. ignore)
            label_arr[np.sum(chip, axis=2) == 0] = 0

            print('.', end='', flush=True)
            return label_arr

        return SemanticSegmentationLabels(windows, label_fn)
    def get_labels(self, chip_size=1000):
        """Get all labels.

        Returns:
            SemanticSegmentationLabels with windows of size chip_size covering the
                scene with no overlap.
        """
        def label_fn(window):
            raw_labels = self.source.get_raw_chip(window)
            if self.class_trans:
                labels = self.class_trans.rgb_to_class(raw_labels)
            else:
                labels = np.squeeze(raw_labels)
            return labels

        if self.source is None:
            raise Exception('Raster source at {} does not exist'.format(
                self.uri))

        extent = self.source.get_extent()
        windows = extent.get_windows(chip_size, chip_size)
        return SemanticSegmentationLabels(windows, label_fn)
    def predict(self, chips, windows, tmp_dir):
        """Return predictions for a chip using model.

        Args:
            chips: [[height, width, channels], ...] numpy array of chips
            windows: List of boxes that are the windows aligned with the chips.

        Return:
            Labels object containing predictions
        """
        # chips and windows both are arrays, but they always only contain one element (we think)
        # Labels should be an array of your classifications (integers), in the same shape as the
        # chip.  RV assumes that the class IDs start at 1, 0 is an "ignore" class, so it shouldn't
        # be included during training. They need to be integers. So I need to do the snapping here
        # (and it should happen in the training too, in the same way).
        self.load_model(tmp_dir)
        func_chips = [np.transpose(chip, (2, 0, 1)) for chip in chips]
        # The expected output shape is only one band with the same length and width dimensions
        label_arr = apply_to_raster(
            self.raster_func,
            func_chips[0],
            (chips[0].shape[0], chips[0].shape[1])
        )
        print(label_arr.shape, label_arr.dtype, str(label_arr))

        # Return "trivial" instance of SemanticSegmentationLabels that holds a single
        # window and has ability to get labels for that one window.
        # This is designed to access the prediction for a particular window lazily.
        # If the data isn't huge this is just a pass through for the results, which is what is
        # happening here.
        def label_fn(_window):
            if _window == windows[0]:
                return label_arr  # Do the prediction in here.
            else:
                raise ValueError('Trying to get labels for unknown window.')
        return SemanticSegmentationLabels(windows, label_fn)
 def empty_labels(self):
     """Returns an empty SemanticSegmentationLabels object."""
     return SemanticSegmentationLabels()