Beispiel #1
0
def main(_):
    for k in range(1, 2):
        # if k == 2:
        # continue
        import shutil
        # os.chdir('/home/tianyijun/zm/fer2013')

        if os.path.isdir(FLAGS.output_dir):
            shutil.rmtree(FLAGS.output_dir)
            os.mkdir(FLAGS.output_dir)
        tf.logging.set_verbosity(tf.logging.INFO)

        processors = {

            "my": MyProcessor
        }

        if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
            raise ValueError(
                "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

        bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

        if FLAGS.max_seq_length > bert_config.max_position_embeddings:
            raise ValueError(
                "Cannot use sequence length %d because the BERT model "
                "was only trained up to sequence length %d" %
                (FLAGS.max_seq_length, bert_config.max_position_embeddings))

        tf.gfile.MakeDirs(FLAGS.output_dir)

        task_name = FLAGS.task_name.lower()

        if task_name not in processors:
            raise ValueError("Task not found: %s" % (task_name))

        processor = processors[task_name](k)

        label_list = processor.get_labels()

        tokenizer = tokenization.FullTokenizer(
            vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

        tpu_cluster_resolver = None
        if FLAGS.use_tpu and FLAGS.tpu_name:
            tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
                FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

        is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
        run_config = tf.contrib.tpu.RunConfig(
            cluster=tpu_cluster_resolver,
            master=FLAGS.master,
            model_dir=FLAGS.output_dir,
            save_checkpoints_steps=FLAGS.save_checkpoints_steps,
            tpu_config=tf.contrib.tpu.TPUConfig(
                iterations_per_loop=FLAGS.iterations_per_loop,
                num_shards=FLAGS.num_tpu_cores,
                per_host_input_for_training=is_per_host))

        train_examples = None
        num_train_steps = None
        num_warmup_steps = None
        if FLAGS.do_train:
            train_examples = processor.get_train_examples(FLAGS.data_dir)
            num_train_steps = int(
                len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
            num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

        model_fn = model_fn_builder(
            bert_config=bert_config,
            num_labels=len(label_list),
            init_checkpoint=FLAGS.init_checkpoint,
            learning_rate=FLAGS.learning_rate,
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
            use_tpu=FLAGS.use_tpu,
            use_one_hot_embeddings=FLAGS.use_tpu)

        # If TPU is not available, this will fall back to normal Estimator on CPU
        # or GPU.
        estimator = tf.contrib.tpu.TPUEstimator(
            use_tpu=FLAGS.use_tpu,
            model_fn=model_fn,
            config=run_config,
            train_batch_size=FLAGS.train_batch_size,
            eval_batch_size=FLAGS.eval_batch_size,
            predict_batch_size=FLAGS.predict_batch_size)

        if FLAGS.do_train:
            train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
            file_based_convert_examples_to_features(
                train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
            tf.logging.info("***** Running training *****")
            tf.logging.info("  Num examples = %d", len(train_examples))
            tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
            tf.logging.info("  Num steps = %d", num_train_steps)
            train_input_fn = file_based_input_fn_builder(
                input_file=train_file,
                seq_length=FLAGS.max_seq_length,
                is_training=True,
                drop_remainder=True)
            estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

        if FLAGS.do_eval:
            eval_examples = processor.get_dev_examples(FLAGS.data_dir)
            eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
            file_based_convert_examples_to_features(
                eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

            tf.logging.info("***** Running evaluation *****")
            tf.logging.info("  Num examples = %d", len(eval_examples))
            tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

            # This tells the estimator to run through the entire set.
            eval_steps = None
            # However, if running eval on the TPU, you will need to specify the
            # number of steps.
            if FLAGS.use_tpu:
                # Eval will be slightly WRONG on the TPU because it will truncate
                # the last batch.
                eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)

            eval_drop_remainder = True if FLAGS.use_tpu else False
            eval_input_fn = file_based_input_fn_builder(
                input_file=eval_file,
                seq_length=FLAGS.max_seq_length,
                is_training=False,
                drop_remainder=eval_drop_remainder)

            result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

            output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
            with tf.gfile.GFile(output_eval_file, "w") as writer:
                tf.logging.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    tf.logging.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))

        if FLAGS.do_predict:
            predict_examples = processor.get_test_examples(FLAGS.data_dir)
            predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
            file_based_convert_examples_to_features(predict_examples, label_list,
                                                    FLAGS.max_seq_length, tokenizer,
                                                    predict_file)

            tf.logging.info("***** Running prediction*****")
            tf.logging.info("  Num examples = %d", len(predict_examples))
            tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

            if FLAGS.use_tpu:
                # Warning: According to tpu_estimator.py Prediction on TPU is an
                # experimental feature and hence not supported here
                raise ValueError("Prediction in TPU not supported")

            predict_drop_remainder = True if FLAGS.use_tpu else False
            predict_input_fn = file_based_input_fn_builder(
                input_file=predict_file,
                seq_length=FLAGS.max_seq_length,
                is_training=False,
                drop_remainder=predict_drop_remainder)

            result = estimator.predict(input_fn=predict_input_fn)

            output_predict_file = os.path.join('', "test_results" + "_" + str(k) + ".tsv")
            with tf.gfile.GFile(output_predict_file, "w") as writer:
                tf.logging.info("***** Predict results *****")
                for prediction in result:
                    output_line = "\t".join(
                        str(class_probability) for class_probability in prediction) + "\n"
                    writer.write(output_line)

        if os.path.isdir(FLAGS.output_dir):
            shutil.rmtree(FLAGS.output_dir)
            os.mkdir(FLAGS.output_dir)
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    layer_indexes = [int(x) for x in FLAGS.layers.split(",")]

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        master=FLAGS.master,
        tpu_config=tf.contrib.tpu.TPUConfig(
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    examples = read_examples(FLAGS.input_file)

    features = convert_examples_to_features(examples=examples,
                                            seq_length=FLAGS.max_seq_length,
                                            tokenizer=tokenizer)

    unique_id_to_feature = {}
    for feature in features:
        unique_id_to_feature[feature.unique_id] = feature

    model_fn = model_fn_builder(
        bert_config=bert_config,
        init_checkpoint=FLAGS.init_checkpoint,
        layer_indexes=layer_indexes,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        predict_batch_size=FLAGS.batch_size)

    input_fn = input_fn_builder(features=features,
                                seq_length=FLAGS.max_seq_length)

    with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
                                                 "w")) as writer:
        for result in estimator.predict(input_fn, yield_single_examples=True):
            unique_id = int(result["unique_id"])
            feature = unique_id_to_feature[unique_id]
            output_json = collections.OrderedDict()
            output_json["linex_index"] = unique_id
            all_features = []
            for (i, token) in enumerate(feature.tokens):
                all_layers = []
                for (j, layer_index) in enumerate(layer_indexes):
                    layer_output = result["layer_output_%d" % j]
                    layers = collections.OrderedDict()
                    layers["index"] = layer_index
                    layers["values"] = [
                        round(float(x), 6)
                        for x in layer_output[i:(i + 1)].flat
                    ]
                    all_layers.append(layers)
                features = collections.OrderedDict()
                features["token"] = token
                features["layers"] = all_layers
                all_features.append(features)
            output_json["features"] = all_features
            writer.write(json.dumps(output_json) + "\n")