Beispiel #1
0
    def test_dqn_compilation(self):
        """Test whether a DQNTrainer can be built on all frameworks."""
        num_iterations = 1
        config = dqn.dqn.DQNConfig().rollouts(num_rollout_workers=2)

        for _ in framework_iterator(config, with_eager_tracing=True):
            # Double-dueling DQN.
            print("Double-dueling")
            plain_config = deepcopy(config)
            trainer = dqn.DQNTrainer(config=plain_config, env="CartPole-v0")
            for i in range(num_iterations):
                results = trainer.train()
                check_train_results(results)
                print(results)

            check_compute_single_action(trainer)
            trainer.stop()

            # Rainbow.
            print("Rainbow")
            rainbow_config = deepcopy(config).training(num_atoms=10,
                                                       noisy=True,
                                                       double_q=True,
                                                       dueling=True,
                                                       n_step=5)
            trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
            for i in range(num_iterations):
                results = trainer.train()
                check_train_results(results)
                print(results)

            check_compute_single_action(trainer)

            trainer.stop()
Beispiel #2
0
    def test_evaluation_option_always_attach_eval_metrics(self):
        config = dqn.DEFAULT_CONFIG.copy()
        config.update({
            "env": "CartPole-v0",
            "evaluation_interval": 2,
            "evaluation_duration": 2,
            "evaluation_duration_unit": "episodes",
            "evaluation_config": {
                "gamma": 0.98,
            },
            "always_attach_evaluation_results": True,
            # Use a custom callback that asserts that we are running the
            # configured exact number of episodes per evaluation.
            "callbacks": AssertEvalCallback,
        })

        for _ in framework_iterator(config, frameworks=("tf", "torch")):
            trainer = dqn.DQNTrainer(config=config)
            # Should always see latest available eval results.
            r0 = trainer.train()
            r1 = trainer.train()
            r2 = trainer.train()
            r3 = trainer.train()
            trainer.stop()

            # Eval results are not available at step 0.
            # But step 3 should still have it, even though no eval was
            # run during that step.
            self.assertTrue("evaluation" in r0)
            self.assertTrue("evaluation" in r1)
            self.assertTrue("evaluation" in r2)
            self.assertTrue("evaluation" in r3)
Beispiel #3
0
    def test_evaluation_option(self):
        config = dqn.DEFAULT_CONFIG.copy()
        config.update({
            "env": "CartPole-v0",
            "evaluation_interval": 2,
            "evaluation_duration": 2,
            "evaluation_config": {
                "gamma": 0.98,
            },
            # Use a custom callback that asserts that we are running the
            # configured exact number of episodes per evaluation.
            "callbacks": AssertEvalCallback,
        })

        for _ in framework_iterator(config, frameworks=("tf", "torch")):
            trainer = dqn.DQNTrainer(config=config)
            # Given evaluation_interval=2, r0, r2, r4 should not contain
            # evaluation metrics, while r1, r3 should.
            r0 = trainer.train()
            print(r0)
            r1 = trainer.train()
            print(r1)
            r2 = trainer.train()
            print(r2)
            r3 = trainer.train()
            print(r3)
            trainer.stop()

            self.assertFalse("evaluation" in r0)
            self.assertTrue("evaluation" in r1)
            self.assertFalse("evaluation" in r2)
            self.assertTrue("evaluation" in r3)
            self.assertTrue("episode_reward_mean" in r1["evaluation"])
            self.assertNotEqual(r1["evaluation"], r3["evaluation"])
Beispiel #4
0
    def test_on_sub_environment_created_with_remote_envs(self):
        base_config = {
            "env": "CartPole-v1",
            # Make each sub-environment a ray actor.
            "remote_worker_envs": True,
            # Create 4 sub-environments (ray remote actors) per remote
            # worker.
            "num_envs_per_worker": 4,
            # Create 2 remote workers.
            "num_workers": 2,
        }

        for callbacks in (
                OnSubEnvironmentCreatedCallback,
                MultiCallbacks([OnSubEnvironmentCreatedCallback]),
        ):
            config = dict(base_config, callbacks=callbacks)

            for _ in framework_iterator(config, frameworks=("tf", "torch")):
                trainer = dqn.DQNTrainer(config=config)
                # Fake the counter on the local worker (doesn't have an env) and
                # set it to -1 so the below `foreach_worker()` won't fail.
                trainer.workers.local_worker().sum_sub_env_vector_indices = -1

                # Get sub-env vector index sums from the 2 remote workers:
                sum_sub_env_vector_indices = trainer.workers.foreach_worker(
                    lambda w: w.sum_sub_env_vector_indices)
                # Local worker has no environments -> Expect the -1 special
                # value returned by the above lambda.
                self.assertTrue(sum_sub_env_vector_indices[0] == -1)
                # Both remote workers (index 1 and 2) have a vector index counter
                # of 6 (sum of vector indices: 0 + 1 + 2 + 3).
                self.assertTrue(sum_sub_env_vector_indices[1] == 6)
                self.assertTrue(sum_sub_env_vector_indices[2] == 6)
                trainer.stop()
Beispiel #5
0
 def test_leaky_policy(self):
     """Tests, whether our diagnostics tools can detect leaks in a policy."""
     config = dqn.DEFAULT_CONFIG.copy()
     # Make sure we have an env to test on the local worker.
     # Otherwise, `check_memory_leaks` will complain.
     config["create_env_on_driver"] = True
     config["env"] = "CartPole-v0"
     config["multiagent"]["policies"] = {
         "default_policy": PolicySpec(policy_class=MemoryLeakingPolicy),
     }
     trainer = dqn.DQNTrainer(config=config)
     results = check_memory_leaks(trainer, to_check={"policy"}, repeats=300)
     assert results["policy"]
     trainer.stop()
Beispiel #6
0
def train_rllib_policy(config):
    """Trains a DQNTrainer on MsPacman-v0 for n iterations.

    Saves the trained Trainer to disk and returns the checkpoint path.

    Returns:
        str: The saved checkpoint to restore the trainer DQNTrainer from.
    """
    # Create trainer from config.
    trainer = dqn.DQNTrainer(config=config)

    # Train for n iterations, then save.
    for _ in range(args.train_iters):
        print(trainer.train())
    return trainer.save()
Beispiel #7
0
    def test_traj_view_normal_case(self):
        """Tests, whether Model and Policy return the correct ViewRequirements."""
        config = dqn.DEFAULT_CONFIG.copy()
        config["num_envs_per_worker"] = 10
        config["rollout_fragment_length"] = 4

        for _ in framework_iterator(config):
            trainer = dqn.DQNTrainer(
                config,
                env="ray.rllib.examples.env.debug_counter_env.DebugCounterEnv")
            policy = trainer.get_policy()
            view_req_model = policy.model.view_requirements
            view_req_policy = policy.view_requirements
            assert len(view_req_model) == 1, view_req_model
            assert len(view_req_policy) == 10, view_req_policy
            for key in [
                    SampleBatch.OBS,
                    SampleBatch.ACTIONS,
                    SampleBatch.REWARDS,
                    SampleBatch.DONES,
                    SampleBatch.NEXT_OBS,
                    SampleBatch.EPS_ID,
                    SampleBatch.AGENT_INDEX,
                    "weights",
            ]:
                assert key in view_req_policy
                # None of the view cols has a special underlying data_col,
                # except next-obs.
                if key != SampleBatch.NEXT_OBS:
                    assert view_req_policy[key].data_col is None
                else:
                    assert view_req_policy[key].data_col == SampleBatch.OBS
                    assert view_req_policy[key].shift == 1
            rollout_worker = trainer.workers.local_worker()
            sample_batch = rollout_worker.sample()
            expected_count = (config["num_envs_per_worker"] *
                              config["rollout_fragment_length"])
            assert sample_batch.count == expected_count
            for v in sample_batch.values():
                assert len(v) == expected_count
            trainer.stop()
Beispiel #8
0
 def __init__(self, config, checkpoint_path):
     # Create the Trainer.
     self.trainer = dqn.DQNTrainer(config=config)
     # Load an already trained state for the trainer.
     self.trainer.restore(checkpoint_path)
Beispiel #9
0
    def test_dqn_exploration_and_soft_q_config(self):
        """Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
        config = (dqn.dqn.DQNConfig().rollouts(
            num_rollout_workers=0).environment(env_config={
                "is_slippery": False,
                "map_name": "4x4"
            }))
        obs = np.array(0)

        # Test against all frameworks.
        for _ in framework_iterator(config):
            # Default EpsilonGreedy setup.
            trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
            # Setting explore=False should always return the same action.
            a_ = trainer.compute_single_action(obs, explore=False)
            for _ in range(50):
                a = trainer.compute_single_action(obs, explore=False)
                check(a, a_)
            # explore=None (default: explore) should return different actions.
            actions = []
            for _ in range(50):
                actions.append(trainer.compute_single_action(obs))
            check(np.std(actions), 0.0, false=True)
            trainer.stop()

            # Low softmax temperature. Behaves like argmax
            # (but no epsilon exploration).
            config.exploration(exploration_config={
                "type": "SoftQ",
                "temperature": 0.000001
            })
            trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
            # Due to the low temp, always expect the same action.
            actions = [trainer.compute_single_action(obs)]
            for _ in range(50):
                actions.append(trainer.compute_single_action(obs))
            check(np.std(actions), 0.0, decimals=3)
            trainer.stop()

            # Higher softmax temperature.
            config.exploration_config["temperature"] = 1.0
            trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")

            # Even with the higher temperature, if we set explore=False, we
            # should expect the same actions always.
            a_ = trainer.compute_single_action(obs, explore=False)
            for _ in range(50):
                a = trainer.compute_single_action(obs, explore=False)
                check(a, a_)

            # Due to the higher temp, expect different actions avg'ing
            # around 1.5.
            actions = []
            for _ in range(300):
                actions.append(trainer.compute_single_action(obs))
            check(np.std(actions), 0.0, false=True)
            trainer.stop()

            # With Random exploration.
            config.exploration(exploration_config={"type": "Random"},
                               explore=True)
            trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
            actions = []
            for _ in range(300):
                actions.append(trainer.compute_single_action(obs))
            check(np.std(actions), 0.0, false=True)
            trainer.stop()