Beispiel #1
0
 def __init__(self, obs_space, action_space, num_outputs, model_config,
              name):
     super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
                                       model_config, name)
     self.model = FullyConnectedNetwork(obs_space, action_space,
                                        num_outputs, model_config, name)
     self.register_variables(self.model.variables())
Beispiel #2
0
 def __init__(self,
              obs_space,
              action_space,
              num_outputs,
              model_config,
              name,
              true_obs_shape=(4, ),
              action_embed_size=6,
              **kw):
     super(ParametricActionsModel, self).__init__(
         obs_space, action_space, num_outputs, model_config, name, **kw)
     if model_config['custom_options']['spy']:
         true_obs_space = make_spy_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
     else:
         true_obs_space = make_blind_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
     if model_config['custom_options']['extended']:
         action_embed_size = 6
     else:
         action_embed_size = 4
     total_dim = 0
     for space in true_obs_space:
         total_dim += get_preprocessor(space)(space).size
     self.action_embed_model = FullyConnectedNetwork(
         Box(-1, 1, shape = (total_dim,)), action_space, action_embed_size,
         model_config, name + "_action_embed")
     self.register_variables(self.action_embed_model.variables())
Beispiel #3
0
class MaskedActionsMLP(DistributionalQModel, TFModelV2):
    """Tensorflow model for Envs that provide action masks with observations."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kwargs):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name, **kwargs)

        # DictFlatteningPreprocessor, combines all obs components together
        # obs.shape for MLP should be a flattened game board obs
        original_space = obs_space.original_space['board']
        flat_obs_space = spaces.Box(low=np.min(original_space.low),
                                    high=np.max(original_space.high),
                                    shape=(np.prod(original_space.shape), ))
        self.mlp = FullyConnectedNetwork(flat_obs_space, action_space,
                                         num_outputs, model_config, name)
        self.register_variables(self.mlp.variables())

    def forward(self, input_dict, state, seq_lens):
        obs = flatten(input_dict['obs']['board'])
        action_mask = tf.maximum(tf.log(input_dict['obs']['action_mask']),
                                 tf.float32.min)
        model_out, _ = self.mlp({'obs': obs})
        return action_mask + model_out, state

    def value_function(self):
        return self.mlp.value_function()
Beispiel #4
0
class VMActionMaskModel(TFModelV2):
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(51, 3),
                 action_embed_size=50,
                 *args,
                 **kwargs):
        super(VMActionMaskModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, *args, **kwargs)
        self.action_embed_model = FullyConnectedNetwork(
            spaces.Box(0, 1, shape=true_obs_shape), action_space,
            action_embed_size, model_config, name + "_action_embedding")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]
        action_embedding, _ = self.action_embed_model(
            {"obs": input_dict["obs"]["state"]})
        intent_vector = tf.expand_dims(action_embedding, 1)
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=1)
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
class CustomTFRPGModel(TFModelV2):
    """Example of interpreting repeated observations."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)
        self.model = TFFCNet(obs_space, action_space, num_outputs,
                             model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        # The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS:
        # {
        #   'items', <tf.Tensor shape=(?, M, N, 5)>,
        #   'location', <tf.Tensor shape=(?, M, 2)>,
        #   'status', <tf.Tensor shape=(?, M, 10)>,
        # }
        print("The unpacked input tensors:", input_dict["obs"])
        print()
        print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim())
        print()
        if tf.executing_eagerly():
            print("Fully unbatched", input_dict["obs"].unbatch_all())
            print()
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
Beispiel #6
0
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized VF."""

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_ops, opp_act) -> vf_pred
        obs = tf.keras.layers.Input(shape=(6, ), name="obs")
        opp_obs = tf.keras.layers.Input(shape=(6, ), name="opp_obs")
        opp_act = tf.keras.layers.Input(shape=(2, ), name="opp_act")
        concat_obs = tf.keras.layers.Concatenate(axis=1)(
            [obs, opp_obs, opp_act])
        central_vf_dense = tf.keras.layers.Dense(
            16, activation=tf.nn.tanh, name="c_vf_dense")(concat_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(
            inputs=[obs, opp_obs, opp_act], outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def central_value_function(self, obs, opponent_obs, opponent_actions):
        return tf.reshape(
            self.central_vf(
                [obs, opponent_obs,
                 tf.one_hot(opponent_actions, 2)]), [-1])
Beispiel #7
0
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(24, ),
                 action_embed_size=None):
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        if action_embed_size is None:
            action_embed_size = action_space.n  # this works for Discrete() action

        # we get the size of the output of the preprocessor automatically chosen by rllib for the real_obs space
        real_obs = obs_space.original_space['real_obs']
        true_obs_shape = get_preprocessor(real_obs)(
            real_obs).size  # this will we an integer
        # true_obs_shape = obs_space.original_space['real_obs']
        self.action_embed_model = FullyConnectedNetwork(
            obs_space=Box(-1, 1, shape=(true_obs_shape, )),
            action_space=action_space,
            num_outputs=action_embed_size,
            model_config=model_config,
            name=name + "_action_embed")
        self.base_model = self.action_embed_model.base_model
        self.register_variables(self.action_embed_model.variables())
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_ops, opp_act) -> vf_pred
        self.max_num_agents = model_config['custom_options']['max_num_agents']
        self.obs_space_shape = obs_space.shape[0]
        other_obs = tf.keras.layers.Input(shape=(obs_space.shape[0] *
                                                 self.max_num_agents, ),
                                          name="opp_obs")
        central_vf_dense = tf.keras.layers.Dense(
            model_config['custom_options']['central_vf_size'],
            activation=tf.nn.tanh,
            name="c_vf_dense")(other_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(inputs=[other_obs],
                                         outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)
Beispiel #9
0
 def __init__(self, obs_space, action_space, num_outputs, model_config,
              name, **kwargs):
     super(HanabiFullyConnected,
           self).__init__(obs_space, action_space, num_outputs,
                          model_config, name, **kwargs)
     self.fc = FullyConnectedNetwork(obs_space.original_space["board"],
                                     action_space, num_outputs,
                                     model_config, name + "fc")
     self.register_variables(self.fc.variables())
Beispiel #10
0
class ParametricActionsModel(DistributionalQTFModel):
    """Parametric action model that handles the dot product and masking.
    This assumes the outputs are logits for a single Categorical action dist.
    Getting this to work with a more complex output (e.g., if the action space
    is a tuple of several distributions) is also possible but left as an
    exercise to the reader.
    """

    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(4, ),
                 action_embed_size=6,
                 **kw):
        super(ParametricActionsModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name, **kw)
        if model_config['custom_options']['spy']:
            true_obs_space = make_spy_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
        else:
            true_obs_space = make_blind_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
        if model_config['custom_options']['extended']:
            action_embed_size = 6
        else:
            action_embed_size = 4
        total_dim = 0
        for space in true_obs_space:
            total_dim += get_preprocessor(space)(space).size
        self.action_embed_model = FullyConnectedNetwork(
            Box(-1, 1, shape = (total_dim,)), action_space, action_embed_size,
            model_config, name + "_action_embed")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Extract the available actions tensor from the observation.        
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]
        # Compute the predicted action embedding
        action_embed, _ = self.action_embed_model({
            "obs": input_dict["obs"]["bitcoin"]
        })

        # Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
        # avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
        intent_vector = tf.expand_dims(action_embed, 1)

        # Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=2)

        # Mask out invalid actions (use tf.float32.min for stability)
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state
    def value_function(self):
        return self.action_embed_model.value_function()
Beispiel #11
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)

        self.fcnet = FullyConnectedNetwork(self.obs_space,
                                           self.action_space,
                                           num_outputs,
                                           model_config,
                                           name="fcnet")
        self.register_variables(self.fcnet.variables())
Beispiel #12
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kwargs):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name, **kwargs)

        # DictFlatteningPreprocessor, combines all obs components together
        # obs.shape for MLP should be a flattened game board obs
        original_space = obs_space.original_space['board']
        flat_obs_space = spaces.Box(low=np.min(original_space.low),
                                    high=np.max(original_space.high),
                                    shape=(np.prod(original_space.shape), ))
        self.mlp = FullyConnectedNetwork(flat_obs_space, action_space,
                                         num_outputs, model_config, name)
        self.register_variables(self.mlp.variables())
Beispiel #13
0
class CustomModel(TFModelV2):
    """Example of a custom model that just delegates to a fc-net."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
                                          model_config, name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
Beispiel #14
0
class FCModel(TFModelV2):
    '''Fully Connected Model'''
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(FCModel, self).__init__(obs_space, action_space, num_outputs,
                                      model_config, name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
 def __init__(self,
              obs_space,
              action_space,
              num_outputs,
              model_config,
              name,
              true_obs_shape=(4, ),
              action_embed_size=2,
              **kw):
     super(ParametricActionsModel, self).__init__(
         obs_space, action_space, num_outputs, model_config, name, **kw)
     self.action_embed_model = FullyConnectedNetwork(
         Box(-1, 1, shape=true_obs_shape), action_space, action_embed_size,
         model_config, name + "_action_embed")
     self.register_variables(self.action_embed_model.variables())
Beispiel #16
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name)

        self.action_model = FullyConnectedNetwork(
            Box(low=0, high=1, shape=(6, )),  # one-hot encoded Discrete(6)
            action_space,
            num_outputs,
            model_config,
            name + "_action")
        self.register_variables(self.action_model.variables())

        self.value_model = FullyConnectedNetwork(obs_space, action_space, 1,
                                                 model_config, name + "_vf")
        self.register_variables(self.value_model.variables())
Beispiel #17
0
 def _build_layers_v2(self, input_dict, num_outputs, options):
     self.obs_in = input_dict["obs"]
     with tf.variable_scope("shared", reuse=tf.AUTO_REUSE):
         self.fcnet = FullyConnectedNetwork(input_dict, self.obs_space,
                                            self.action_space, num_outputs,
                                            options)
     return self.fcnet.outputs, self.fcnet.last_layer
 def __init__(self, obs_space, action_space, num_outputs, model_config,
              name):
     super().__init__(obs_space, action_space, num_outputs, model_config,
                      name)
     self.model = TFFCNet(obs_space, action_space, num_outputs,
                          model_config, name)
     self.register_variables(self.model.variables())
Beispiel #19
0
class ParametricActionsModel(TFModelV2):
    """ Parametric model that handles varying action spaces"""
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(24, ),
                 action_embed_size=None):
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        if action_embed_size is None:
            action_embed_size = action_space.n  # this works for Discrete() action

        # we get the size of the output of the preprocessor automatically chosen by rllib for the real_obs space
        real_obs = obs_space.original_space['real_obs']
        true_obs_shape = get_preprocessor(real_obs)(
            real_obs).size  # this will we an integer
        # true_obs_shape = obs_space.original_space['real_obs']
        self.action_embed_model = FullyConnectedNetwork(
            obs_space=Box(-1, 1, shape=(true_obs_shape, )),
            action_space=action_space,
            num_outputs=action_embed_size,
            model_config=model_config,
            name=name + "_action_embed")
        self.base_model = self.action_embed_model.base_model
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Compute the predicted action probabilties
        # input_dict["obs"]["real_obs"] is a list of 1d tensors if the observation space is a Tuple while
        # it should be a tensor. When it is a list we concatenate the various 1d tensors
        obs_concat = input_dict["obs"]["real_obs"]
        if isinstance(obs_concat, list):
            obs_concat = tf.concat(values=flatten_list(obs_concat), axis=1)
        action_embed, _ = self.action_embed_model({"obs": obs_concat})

        # Mask out invalid actions (use tf.float32.min for stability)
        action_mask = input_dict["obs"]["action_mask"]
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_embed + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
Beispiel #20
0
 def __init__(self,
              obs_space,
              action_space,
              num_outputs,
              model_config,
              name,
              true_obs_shape=(51, 3),
              action_embed_size=50,
              *args,
              **kwargs):
     super(VMActionMaskModel,
           self).__init__(obs_space, action_space, num_outputs,
                          model_config, name, *args, **kwargs)
     self.action_embed_model = FullyConnectedNetwork(
         spaces.Box(0, 1, shape=true_obs_shape), action_space,
         action_embed_size, model_config, name + "_action_embedding")
     self.register_variables(self.action_embed_model.variables())
Beispiel #21
0
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized VF.

    It assumes the observation is a dict with 'own_obs' and 'opponent_obs', the
    former of which can be used for computing actions (i.e., decentralized
    execution), and the latter for optimization (i.e., centralized learning).

    This model has two parts:
    - An action model that looks at just 'own_obs' to compute actions
    - A value model that also looks at the 'opponent_obs' / 'opponent_action'
      to compute the value (it does this by using the 'obs_flat' tensor).
    """
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        self.action_model = FullyConnectedNetwork(
            Box(low=0, high=1, shape=(6, )),  # one-hot encoded Discrete(6)
            action_space,
            num_outputs,
            model_config,
            name + "_action",
        )
        self.register_variables(self.action_model.variables())

        self.value_model = FullyConnectedNetwork(
            obs_space,
            action_space,
            1,
            model_config,
            name + "_vf",
        )
        self.register_variables(self.value_model.variables())

    def forward(self, input_dict, state, seq_lens):
        self._value_out, _ = self.value_model({"obs": input_dict["obs_flat"]},
                                              state, seq_lens)
        return self.action_model({"obs": input_dict["obs"]["own_obs"]}, state,
                                 seq_lens)

    def value_function(self):
        return tf.reshape(self._value_out, [-1])
Beispiel #22
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        observation_length = 12
        obs_lower_bound_list = [0, 0, 20] * observation_length
        obs_upper_bound_list = [650, 2, 40] * observation_length
        self.action_model = FullyConnectedNetwork(
            Box(np.array(obs_lower_bound_list),
                np.array(obs_upper_bound_list)),  # one-hot encoded Discrete(6)
            action_space,
            num_outputs,
            model_config,
            name + "_action")
        self.register_variables(self.action_model.variables())

        self.value_model = FullyConnectedNetwork(obs_space, action_space, 1,
                                                 model_config, name + "_vf")
        self.register_variables(self.value_model.variables())
Beispiel #23
0
    def __init__(
        self,
        obs_space,
        action_space,
        num_outputs,
        model_config,
        name,
    ):
        name = "Pa_model"
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        # get real obs space, discarding action mask
        real_obs_space = obs_space.original_space.spaces['array_obs']

        # define action embed model
        self.action_embed_model = FullyConnectedNetwork(
            real_obs_space, action_space, num_outputs, model_config,
            name + "_action_embed")
        self.register_variables(self.action_embed_model.variables())
Beispiel #24
0
class CustomLossModel(TFModelV2):
    """Custom model that adds an imitation loss on top of the policy loss."""

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)

        self.fcnet = FullyConnectedNetwork(
            self.obs_space,
            self.action_space,
            num_outputs,
            model_config,
            name="fcnet")
        self.register_variables(self.fcnet.variables())

    @override(ModelV2)
    def forward(self, input_dict, state, seq_lens):
        # Delegate to our FCNet.
        return self.fcnet(input_dict, state, seq_lens)

    @override(ModelV2)
    def custom_loss(self, policy_loss, loss_inputs):
        # Create a new input reader per worker.
        reader = JsonReader(
            self.model_config["custom_model_config"]["input_files"])
        input_ops = reader.tf_input_ops()

        # Define a secondary loss by building a graph copy with weight sharing.
        obs = restore_original_dimensions(
            tf.cast(input_ops["obs"], tf.float32), self.obs_space)
        logits, _ = self.forward({"obs": obs}, [], None)

        # You can also add self-supervised losses easily by referencing tensors
        # created during _build_layers_v2(). For example, an autoencoder-style
        # loss can be added as follows:
        # ae_loss = squared_diff(
        #     loss_inputs["obs"], Decoder(self.fcnet.last_layer))
        print("FYI: You can also use these tensors: {}, ".format(loss_inputs))

        # Compute the IL loss.
        action_dist = Categorical(logits, self.model_config)
        self.policy_loss = policy_loss
        self.imitation_loss = tf.reduce_mean(
            -action_dist.logp(input_ops["actions"]))
        return policy_loss + 10 * self.imitation_loss

    def custom_stats(self):
        return {
            "policy_loss": self.policy_loss,
            "imitation_loss": self.imitation_loss,
        }
Beispiel #25
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_obs, opp_act) -> vf_pred
        obs = tf.keras.layers.Input(shape=(6, ), name="obs")
        opp_obs = tf.keras.layers.Input(shape=(6, ), name="opp_obs")
        opp_act = tf.keras.layers.Input(shape=(2, ), name="opp_act")
        concat_obs = tf.keras.layers.Concatenate(axis=1)(
            [obs, opp_obs, opp_act])
        central_vf_dense = tf.keras.layers.Dense(
            16, activation=tf.nn.tanh, name="c_vf_dense")(concat_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(
            inputs=[obs, opp_obs, opp_act], outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)
Beispiel #26
0
    def __init__(self, observation_space, action_space, num_outputs,
                 model_config, name):
        super().__init__(observation_space, action_space, num_outputs,
                         model_config, name)

        inputs = tf.keras.layers.Input(shape=observation_space.shape)
        self.fcnet = FullyConnectedNetwork(obs_space=self.obs_space,
                                           action_space=self.action_space,
                                           num_outputs=self.num_outputs,
                                           model_config=self.model_config,
                                           name="fc1")
        out, value_out = self.fcnet.base_model(inputs)

        def lambda_(x):
            eager_out = tf.py_function(self.forward_eager, [x], tf.float32)
            with tf.control_dependencies([eager_out]):
                eager_out.set_shape(x.shape)
                return eager_out

        out = tf.keras.layers.Lambda(lambda_)(out)
        self.base_model = tf.keras.models.Model(inputs, [out, value_out])
        self.register_variables(self.base_model.variables)
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized VF."""

    # TODO(@evinitsky) make this work with more than boxes

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_ops, opp_act) -> vf_pred
        self.max_num_agents = model_config['custom_options']['max_num_agents']
        self.obs_space_shape = obs_space.shape[0]
        other_obs = tf.keras.layers.Input(shape=(obs_space.shape[0] *
                                                 self.max_num_agents, ),
                                          name="opp_obs")
        central_vf_dense = tf.keras.layers.Dense(
            model_config['custom_options']['central_vf_size'],
            activation=tf.nn.tanh,
            name="c_vf_dense")(other_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(inputs=[other_obs],
                                         outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def central_value_function(self, obs, opponent_obs):
        return tf.reshape(self.central_vf([opponent_obs]), [-1])

    def value_function(self):
        return self.model.value_function()  # not used
    def __init__(self, obs_space, action_space, num_outputs, model_config, name, **kwargs):
        super(HanabiHandInference, self).__init__(obs_space, action_space,
                                                         model_config["custom_options"]["q_module_hiddens"][-1],
                                                         model_config, name,
                                                         **kwargs)
        self.obs_module = FullyConnectedNetwork(obs_space.original_space["board"],
                                                None,
                                                model_config["custom_options"]["obs_module_hiddens"][-1],
                                                {
                                                    "fcnet_activation": model_config["fcnet_activation"],
                                                    "fcnet_hiddens": model_config["custom_options"][
                                                        "obs_module_hiddens"],
                                                    "no_final_linear": True,
                                                    "vf_share_layers": True},
                                                name + "obs_module")

        obs_module_output_dummy = numpy.zeros(model_config["custom_options"]["obs_module_hiddens"][-1])
        self.q_module = FullyConnectedNetwork(obs_module_output_dummy, None,
                                              model_config["custom_options"]["q_module_hiddens"][-1],
                                              {"fcnet_activation": model_config["fcnet_activation"],
                                               "fcnet_hiddens": model_config["custom_options"]["q_module_hiddens"],
                                               "no_final_linear": True,
                                               "vf_share_layers": True},
                                              name + "q_module")

        self.aux_module = FullyConnectedNetwork(obs_module_output_dummy, None,
                                                model_config["custom_options"]["aux_module_hiddens"][-1],
                                                {"fcnet_activation": model_config["fcnet_activation"],
                                                    "fcnet_hiddens": model_config["custom_options"][
                                                        "aux_module_hiddens"],
                                                    "no_final_linear": True,
                                                    "vf_share_layers": True},
                                                name + "aux_module")

        aux_head_input_dummy = numpy.zeros(model_config["custom_options"]["aux_module_hiddens"][-1])
        self.aux_head = FullyConnectedNetwork(aux_head_input_dummy, None,
                                              numpy.prod(obs_space.original_space["hidden_hand"].shape),
                                              {"fcnet_activation": model_config["fcnet_activation"],
                                                  "fcnet_hiddens": model_config["custom_options"][
                                                      "aux_head_hiddens"],
                                                  "no_final_linear": False,
                                                  "vf_share_layers": True},
                                              name + "aux_head")
        self.register_variables(self.obs_module.variables())
        self.register_variables(self.q_module.variables())
        self.register_variables(self.aux_module.variables())
        self.register_variables(self.aux_head.variables())
        self.aux_loss_formula = get_aux_loss_formula(model_config["custom_options"].get("aux_loss_formula", "sqrt"))
Beispiel #29
0
class HanabiFullyConnected(LegalActionsDistributionalQModel):
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kwargs):
        super(HanabiFullyConnected,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, **kwargs)
        self.fc = FullyConnectedNetwork(obs_space.original_space["board"],
                                        action_space, num_outputs,
                                        model_config, name + "fc")
        self.register_variables(self.fc.variables())

    def forward(self, input_dict, state, seq_lens):
        model_out, state = self.fc({"obs": input_dict["obs"]["board"]}, state,
                                   seq_lens)
        self.calculate_and_store_q(input_dict, model_out)
        return model_out, state
Beispiel #30
0
class EagerModel(TFModelV2):
    """Example of using embedded eager execution in a custom model.

    This shows how to use tf.py_function() to execute a snippet of TF code
    in eager mode. Here the `self.forward_eager` method just prints out
    the intermediate tensor for debug purposes, but you can in general
    perform any TF eager operation in tf.py_function().
    """
    def __init__(self, observation_space, action_space, num_outputs,
                 model_config, name):
        super().__init__(observation_space, action_space, num_outputs,
                         model_config, name)

        inputs = tf.keras.layers.Input(shape=observation_space.shape)
        self.fcnet = FullyConnectedNetwork(obs_space=self.obs_space,
                                           action_space=self.action_space,
                                           num_outputs=self.num_outputs,
                                           model_config=self.model_config,
                                           name="fc1")
        out, value_out = self.fcnet.base_model(inputs)

        def lambda_(x):
            eager_out = tf.py_function(self.forward_eager, [x], tf.float32)
            with tf.control_dependencies([eager_out]):
                eager_out.set_shape(x.shape)
                return eager_out

        out = tf.keras.layers.Lambda(lambda_)(out)
        self.base_model = tf.keras.models.Model(inputs, [out, value_out])
        self.register_variables(self.base_model.variables)

    @override(ModelV2)
    def forward(self, input_dict, state, seq_lens):
        out, self._value_out = self.base_model(input_dict["obs"], state,
                                               seq_lens)
        return out, []

    @override(ModelV2)
    def value_function(self):
        return tf.reshape(self._value_out, [-1])

    def forward_eager(self, feature_layer):
        assert tf.executing_eagerly()
        if random.random() > 0.99:
            print("Eagerly printing the feature layer mean value",
                  tf.reduce_mean(feature_layer))
        return feature_layer