Beispiel #1
0
    def __init__(self, name, replica_tag, _callable, is_function):
        self.name = name
        self.replica_tag = replica_tag
        self.callable = _callable
        self.is_function = is_function

        self.metric_client = MetricClient.connect_from_serve(
            default_labels={"backend": self.name})
        self.request_counter = self.metric_client.new_counter(
            "backend_request_counter",
            description=("Number of queries that have been "
                         "processed in this replica"),
        )
        self.error_counter = self.metric_client.new_counter(
            "backend_error_counter",
            description=("Number of exceptions that have "
                         "occurred in the backend"),
        )
        self.restart_counter = self.metric_client.new_counter(
            "backend_worker_starts",
            description=("The number of time this replica workers "
                         "has been restarted due to failure."),
            label_names=("replica_tag", ))

        self.restart_counter.labels(replica_tag=self.replica_tag).add()
Beispiel #2
0
    async def fetch_config_from_master(self):
        assert ray.is_initialized()
        master = ray.util.get_actor(SERVE_MASTER_NAME)

        self.route_table, [
            self.router_handle
        ] = await retry_actor_failures_async(master.get_http_proxy_config)

        # The exporter is required to return results for /-/metrics endpoint.
        [self.metric_exporter
         ] = await retry_actor_failures_async(master.get_metric_exporter)

        self.metric_client = MetricClient.connect_from_serve()
        self.request_counter = self.metric_client.new_counter(
            "num_http_requests",
            description="The number of requests processed",
            label_names=("route", ))
Beispiel #3
0
    async def __init__(self):
        # Note: Several queues are used in the router
        # - When a request come in, it's placed inside its corresponding
        #   endpoint_queue.
        # - The endpoint_queue is dequeued during flush operation, which moves
        #   the queries to backend buffer_queue. Here we match a request
        #   for an endpoint to a backend given some policy.
        # - The worker_queue is used to collect idle actor handle. These
        #   handles are dequed during the second stage of flush operation,
        #   which assign queries in buffer_queue to actor handle.

        # -- Queues -- #

        # endpoint_name -> request queue
        self.endpoint_queues: DefaultDict[asyncio.Queue[Query]] = defaultdict(
            asyncio.Queue)
        # backend_name -> worker request queue
        self.worker_queues: DefaultDict[asyncio.Queue[
            ray.actor.ActorHandle]] = defaultdict(asyncio.Queue)
        # backend_name -> worker payload queue
        self.backend_queues = defaultdict(blist.sortedlist)

        # -- Metadata -- #

        # endpoint_name -> traffic_policy
        self.traffic = dict()
        # backend_name -> backend_config
        self.backend_info = dict()
        # replica tag -> worker_handle
        self.replicas = dict()

        # -- Synchronization -- #

        # This lock guarantee that only one flush operation can happen at a
        # time. Without the lock, multiple flush operation can pop from the
        # same buffer_queue and worker_queue and create deadlock. For example,
        # an operation holding the only query and the other flush operation
        # holding the only idle replica. Additionally, allowing only one flush
        # operation at a time simplifies design overhead for custom queuing and
        # batching polcies.
        self.flush_lock = asyncio.Lock()

        # Fetch the worker handles, traffic policies, and backend configs from
        # the master actor. We use a "pull-based" approach instead of pushing
        # them from the master so that the router can transparently recover
        # from failure.
        ray.serve.init()
        master_actor = ray.serve.api._get_master_actor()

        traffic_policies = retry_actor_failures(
            master_actor.get_traffic_policies)
        for endpoint, traffic_policy in traffic_policies.items():
            await self.set_traffic(endpoint, traffic_policy)

        backend_dict = retry_actor_failures(
            master_actor.get_all_worker_handles)
        for backend_tag, replica_dict in backend_dict.items():
            for replica_tag, worker in replica_dict.items():
                await self.add_new_worker(backend_tag, replica_tag, worker)

        backend_configs = retry_actor_failures(
            master_actor.get_backend_configs)
        for backend, backend_config in backend_configs.items():
            await self.set_backend_config(backend, backend_config)

        self.metric_client = MetricClient.connect_from_serve()
        self.num_router_requests = self.metric_client.new_counter(
            "num_router_requests",
            description="Number of requests processed by the router.",
            label_names=("endpoint", ))
        self.num_error_endpoint_request = self.metric_client.new_counter(
            "num_error_endpoint_requests",
            description=("Number of requests errored when getting result "
                         "for endpoint."),
            label_names=("endpoint", ))
        self.num_error_backend_request = self.metric_client.new_counter(
            "num_error_backend_requests",
            description=("Number of requests errored when getting result "
                         "from backend."),
            label_names=("backend", ))