Beispiel #1
0
def test_worker_creation_num_cpus(ray_start_2_cpus):
    assert ray.available_resources()["CPU"] == 2
    wg = WorkerGroup(num_cpus_per_worker=2)
    time.sleep(1)
    assert len(wg.workers) == 1
    # Make sure both CPUs are being used by the actor.
    assert "CPU" not in ray.available_resources()
    wg.shutdown()
Beispiel #2
0
def test_worker_restart(ray_start_2_cpus):
    wg = WorkerGroup(num_workers=2)
    with pytest.raises(RuntimeError):
        wg.start()
    # Avoid race condition.
    time.sleep(1)
    wg.shutdown(0)
    wg.start()
    wg.execute(lambda: 1)
Beispiel #3
0
def test_bad_resources(ray_start_2_cpus):
    with pytest.raises(ValueError):
        WorkerGroup(num_workers=-1)

    with pytest.raises(ValueError):
        WorkerGroup(num_cpus_per_worker=-1)

    with pytest.raises(ValueError):
        WorkerGroup(num_gpus_per_worker=-1)
Beispiel #4
0
    def on_start(self, worker_group: WorkerGroup,
                 backend_config: HorovodConfig):

        # TODO(matt): Implement placement group strategies in BackendExecutor.

        # Initialize workers with Horovod environment variables
        setup_futures = []
        for rank in range(len(worker_group)):
            worker_node_id = worker_group.workers[rank].metadata.node_id
            setup_futures.append(
                worker_group.execute_single_async(rank, _init_env_vars, rank,
                                                  len(worker_group),
                                                  worker_node_id))
        ray.get(setup_futures)

        # Use Horovod Ray Coordinator
        # backend_config as settings
        self.coordinator = Coordinator(backend_config)

        # Get all the hostnames of all workers
        node_ids = [w.metadata.node_id for w in worker_group.workers]
        hostnames = [w.metadata.hostname for w in worker_group.workers]
        # Register each hostname to the coordinator. assumes the hostname
        # ordering is the same.
        for rank, (hostname, node_id) in enumerate(zip(hostnames, node_ids)):
            self.coordinator.register(hostname, node_id, rank)
        all_info = self.coordinator.finalize_registration()

        setup_futures = []
        for rank, local_cross_env_var in all_info.items():
            setup_futures.append(
                worker_group.execute_single_async(rank, update_env_vars,
                                                  local_cross_env_var))
        ray.get(setup_futures)

        coordinator_envs = self.coordinator.establish_rendezvous()

        # Get one worker from each host/node.
        node_worker_indexes = [
            node_ids.index(node_id) for node_id in set(node_ids)
        ]
        node_workers = [
            _HorovodWorkerWrapper(worker_group.workers[worker_index])
            for worker_index in node_worker_indexes
        ]
        assert len(node_workers) == len(self.coordinator.hostnames)

        nics = detect_nics(
            backend_config,
            all_host_names=list(self.coordinator.hostnames),
            node_workers=node_workers,
        )
        coordinator_envs.update(nics_to_env_var(nics))

        worker_group.execute(update_env_vars, coordinator_envs)
Beispiel #5
0
def test_execute_single(ray_start_2_cpus):
    wg = WorkerGroup(num_workers=2)

    def f():
        import os

        os.environ["TEST"] = "1"

    wg.execute_single(1, f)

    def check():
        import os

        return os.environ.get("TEST", "0")

    assert wg.execute(check) == ["0", "1"]
Beispiel #6
0
    def on_start(self, worker_group: WorkerGroup, backend_config: TorchConfig):
        if dist.is_available():
            # Set the appropriate training backend.
            if backend_config.backend is None:
                if worker_group.num_gpus_per_worker > 0:
                    backend = "nccl"
                else:
                    backend = "gloo"
            else:
                backend = backend_config.backend

            master_addr, master_port = worker_group.execute_single(
                0, get_address_and_port)
            if backend_config.init_method == "env":

                def set_env_vars(addr, port):
                    os.environ["MASTER_ADDR"] = addr
                    os.environ["MASTER_PORT"] = str(port)

                worker_group.execute(set_env_vars,
                                     addr=master_addr,
                                     port=master_port)
                url = "env://"
            elif backend_config.init_method == "tcp":
                url = f"tcp://{master_addr}:{master_port}"
            else:
                raise ValueError(
                    f"The provided init_method ("
                    f"{backend_config.init_method}) is not supported. Must "
                    f"be either 'env' or 'tcp'.")

            setup_futures = []
            for i in range(len(worker_group)):
                setup_futures.append(
                    worker_group.execute_single_async(
                        i,
                        _setup_torch_process_group,
                        backend=backend,
                        world_rank=i,
                        world_size=len(worker_group),
                        init_method=url,
                        timeout_s=backend_config.timeout_s,
                    ))
            ray.get(setup_futures)
        else:
            raise RuntimeError("Distributed torch is not available.")
Beispiel #7
0
    def on_start(self, worker_group: WorkerGroup,
                 backend_config: TensorflowConfig):
        # Compute URL for initializing distributed setup.
        def get_url():
            address, port = get_address_and_port()
            return f"{address}:{port}"

        urls = worker_group.execute(get_url)

        # Get setup tasks in order to throw errors on failure.
        setup_futures = []
        for i in range(len(worker_group)):
            setup_futures.append(
                worker_group.execute_single_async(
                    i,
                    _setup_tensorflow_environment,
                    worker_addresses=urls,
                    index=i))
        ray.get(setup_futures)
Beispiel #8
0
def test_placement_group(ray_start_2_cpus):
    """Tests that workers can be removed and added to a placement group."""
    num_workers = 2
    bundle = {"CPU": 1}
    bundles = [bundle.copy() for _ in range(num_workers)]
    placement_group = ray.util.placement_group(bundles)
    wg = WorkerGroup(num_workers=num_workers, placement_group=placement_group)
    wg.remove_workers([0])
    wg.add_workers(1)
Beispiel #9
0
def test_worker_shutdown(ray_start_2_cpus):
    assert ray.available_resources()["CPU"] == 2
    wg = WorkerGroup(num_workers=2)
    time.sleep(1)
    assert "CPU" not in ray.available_resources()
    assert len(ray._private.state.actors()) == 2
    wg.shutdown()
    time.sleep(1)
    assert ray.available_resources()["CPU"] == 2

    with pytest.raises(RuntimeError):
        wg.execute(lambda: 1)
Beispiel #10
0
    def start(
        self,
        initialization_hook: Optional[Callable[[], None]] = None,
        train_cls: Optional[Type] = None,
        train_cls_args: Optional[Tuple] = None,
        train_cls_kwargs: Optional[Dict] = None,
    ):
        """Starts the worker group."""
        self._create_placement_group()
        placement_group = self._placement_group or "default"
        self.worker_group = WorkerGroup(
            num_workers=self._num_workers,
            num_cpus_per_worker=self._num_cpus_per_worker,
            num_gpus_per_worker=self._num_gpus_per_worker,
            additional_resources_per_worker=self.
            _additional_resources_per_worker,
            actor_cls=train_cls,
            actor_cls_args=train_cls_args,
            actor_cls_kwargs=train_cls_kwargs,
            placement_group=placement_group,
        )
        try:
            if initialization_hook:
                self._initialization_hook = initialization_hook
                self.worker_group.execute(initialization_hook)

            share_cuda_visible_devices_enabled = bool(
                env_integer(
                    ENABLE_SHARE_CUDA_VISIBLE_DEVICES_ENV,
                    self._backend.share_cuda_visible_devices,
                ))

            if self._num_gpus_per_worker > 0 and share_cuda_visible_devices_enabled:
                self._share_cuda_visible_devices()
            self._backend.on_start(self.worker_group, self._backend_config)
        except RayActorError as exc:
            logger.exception(str(exc))
            logger.warning(
                "Failure occurred during startup. Restarting all workers and "
                "attempting to startup again.")
            self._increment_failures()
            self._restart()
Beispiel #11
0
    def on_shutdown(self, worker_group: WorkerGroup,
                    backend_config: TorchConfig):

        worker_group.execute(_shutdown_torch,
                             destroy_process_group=len(worker_group) > 1)
Beispiel #12
0
def test_execute_args(ray_start_2_cpus):
    wg = WorkerGroup(num_workers=2)
    outputs = wg.execute(lambda x: x, 1)
    assert len(outputs) == 2
    assert all(o == 1 for o in outputs)
Beispiel #13
0
def test_execute_async(ray_start_2_cpus):
    wg = WorkerGroup(num_workers=2)
    futures = wg.execute_async(lambda: 1)
    assert len(futures) == 2
    outputs = ray.get(futures)
    assert all(o == 1 for o in outputs)