Beispiel #1
0
def test_predict_feature_columns():
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    data_batch = np.array([[1, 2, 7], [3, 4, 8], [5, 6, 9]])
    predictions = predictor.predict(data_batch, feature_columns=[0, 1])

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")
Beispiel #2
0
def test_predict(batch_type):
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    raw_batch = pd.DataFrame([[1, 2], [3, 4], [5, 6]])
    data_batch = convert_pandas_to_batch_type(raw_batch,
                                              type=TYPE_TO_ENUM[batch_type])
    predictions = predictor.predict(data_batch)

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")
Beispiel #3
0
def test_predict_feature_columns_pandas():
    pandas_data = pd.DataFrame(dummy_data, columns=["A", "B"])
    pandas_target = pd.Series(dummy_target)
    pandas_model = (lgbm.LGBMClassifier(n_estimators=10).fit(
        pandas_data, pandas_target).booster_)
    preprocessor = DummyPreprocessor()
    predictor = LightGBMPredictor(model=pandas_model,
                                  preprocessor=preprocessor)
    data_batch = pd.DataFrame(np.array([[1, 2, 7], [3, 4, 8], [5, 6, 9]]),
                              columns=["A", "B", "C"])
    predictions = predictor.predict(data_batch, feature_columns=["A", "B"])

    assert len(predictions) == 3
    assert hasattr(predictor.get_preprocessor(), "_batch_transformed")
Beispiel #4
0
def test_init():
    preprocessor = DummyPreprocessor()
    preprocessor.attr = 1
    predictor = LightGBMPredictor(model=model, preprocessor=preprocessor)

    with tempfile.TemporaryDirectory() as tmpdir:
        # This somewhat convoluted procedure is the same as in the
        # Trainers. The reason for saving model to disk instead
        # of directly to the dict as bytes is due to all callbacks
        # following save to disk logic. GBDT models are small
        # enough that IO should not be an issue.
        model.save_model(os.path.join(tmpdir, MODEL_KEY))
        save_preprocessor_to_dir(preprocessor, tmpdir)

        checkpoint = Checkpoint.from_directory(tmpdir)
        checkpoint_predictor = LightGBMPredictor.from_checkpoint(checkpoint)

    assert get_num_trees(checkpoint_predictor.model) == get_num_trees(
        predictor.model)
    assert (checkpoint_predictor.get_preprocessor().attr ==
            predictor.get_preprocessor().attr)