Beispiel #1
0
    def reset_trial(
        self,
        trial: Trial,
        new_config: Dict,
        new_experiment_tag: str,
        logger_creator: Optional[Callable[[Dict], "ray.tune.Logger"]] = None,
    ) -> bool:
        """Tries to invoke `Trainable.reset()` to reset trial.

        Args:
            trial: Trial to be reset.
            new_config: New configuration for Trial trainable.
            new_experiment_tag: New experiment name for trial.
            logger_creator: Function that instantiates a logger on the
                actor process.

        Returns:
            True if `reset_config` is successful else False.
        """
        trial.set_experiment_tag(new_experiment_tag)
        trial.set_config(new_config)
        trainable = trial.runner

        # Pass magic variables
        extra_config = copy.deepcopy(new_config)
        extra_config[TRIAL_INFO] = _TrialInfo(trial)

        stdout_file, stderr_file = trial.log_to_file
        extra_config[STDOUT_FILE] = stdout_file
        extra_config[STDERR_FILE] = stderr_file

        with self._change_working_directory(trial):
            with warn_if_slow("reset"):
                try:
                    reset_val = ray.get(
                        trainable.reset.remote(extra_config, logger_creator),
                        timeout=DEFAULT_GET_TIMEOUT,
                    )
                except GetTimeoutError:
                    logger.exception("Trial %s: reset timed out.", trial)
                    return False
        return reset_val
Beispiel #2
0
    def _setup_remote_runner(self, trial):
        trial.init_logdir()
        # We checkpoint metadata here to try mitigating logdir duplication
        self._trials_to_cache.add(trial)
        logger_creator = partial(noop_logger_creator, logdir=trial.logdir)

        if len(self._cached_actor_pg) > 0:
            assert self._reuse_actors
            existing_runner, pg = self._cached_actor_pg.popleft()
            logger.debug(f"Trial {trial}: Reusing cached runner "
                         f"{existing_runner}")

            trial.set_runner(existing_runner)
            if pg:
                self._pg_manager.assign_cached_pg(pg, trial)

            if not self.reset_trial(trial, trial.config, trial.experiment_tag,
                                    logger_creator):
                raise _AbortTrialExecution(
                    "Trainable runner reuse requires reset_config() to be "
                    "implemented and return True.")
            return existing_runner

        trainable_cls = trial.get_trainable_cls()
        if not trainable_cls:
            raise _AbortTrialExecution(
                f"Invalid trainable: {trial.trainable_name}. If you passed "
                f"a string, make sure the trainable was registered before.")
        _actor_cls = _class_cache.get(trainable_cls)

        if not self._pg_manager.has_ready(trial):
            return None

        full_actor_class = self._pg_manager.get_full_actor_cls(
            trial, _actor_cls)
        # Clear the Trial's location (to be updated later on result)
        # since we don't know where the remote runner is placed.
        trial.set_location(_Location())
        logger.debug("Trial %s: Setting up new remote runner.", trial)
        # Logging for trials is handled centrally by TrialRunner, so
        # configure the remote runner to use a noop-logger.
        trial_config = copy.deepcopy(trial.config)
        trial_config[TRIAL_INFO] = _TrialInfo(trial)

        stdout_file, stderr_file = trial.log_to_file
        trial_config[STDOUT_FILE] = stdout_file
        trial_config[STDERR_FILE] = stderr_file
        kwargs = {
            "config": trial_config,
            "logger_creator": logger_creator,
        }
        if trial.uses_cloud_checkpointing:
            # We keep these kwargs separate for backwards compatibility
            # with trainables that don't provide these keyword arguments
            kwargs["remote_checkpoint_dir"] = trial.remote_checkpoint_dir
            kwargs["custom_syncer"] = trial.custom_syncer

            # Throw a meaningful error if trainable does not use the
            # new API
            sig = inspect.signature(trial.get_trainable_cls())
            try:
                sig.bind_partial(**kwargs)
            except Exception as e:
                raise RuntimeError(
                    "Your trainable class does not accept a "
                    "`remote_checkpoint_dir` or `custom_syncer` argument "
                    "in its constructor, but you've passed a "
                    "`upload_dir` to your SyncConfig. Without accepting "
                    "these parameters and passing them to the base trainable "
                    "constructor in the init call, cloud checkpointing is "
                    "effectively disabled. To resolve this issue, add the "
                    "parameters to your trainable class constructor or "
                    "disable cloud checkpointing by setting `upload_dir=None`."
                ) from e

        with self._change_working_directory(trial):
            return full_actor_class.remote(**kwargs)
Beispiel #3
0
    def testWandbDecoratorConfig(self):
        config = {"par1": 4, "par2": 9.12345678}
        trial = Trial(
            config,
            0,
            "trial_0",
            "trainable",
            PlacementGroupFactory([{
                "CPU": 1
            }]),
            "/tmp",
        )
        trial_info = _TrialInfo(trial)

        @wandb_mixin
        def train_fn(config):
            return 1

        train_fn.__mixins__ = (_MockWandbTrainableMixin, )

        config[TRIAL_INFO] = trial_info

        if WANDB_ENV_VAR in os.environ:
            del os.environ[WANDB_ENV_VAR]

        # Needs at least a project
        with self.assertRaises(ValueError):
            wrapped = wrap_function(train_fn)(config)

        # No API key
        config["wandb"] = {"project": "test_project"}
        with self.assertRaises(ValueError):
            wrapped = wrap_function(train_fn)(config)

        # API Key in config
        config["wandb"] = {"project": "test_project", "api_key": "1234"}
        wrapped = wrap_function(train_fn)(config)
        self.assertEqual(os.environ[WANDB_ENV_VAR], "1234")

        del os.environ[WANDB_ENV_VAR]

        # API Key file
        with tempfile.NamedTemporaryFile("wt") as fp:
            fp.write("5678")
            fp.flush()

            config["wandb"] = {
                "project": "test_project",
                "api_key_file": fp.name
            }

            wrapped = wrap_function(train_fn)(config)
            self.assertEqual(os.environ[WANDB_ENV_VAR], "5678")

        del os.environ[WANDB_ENV_VAR]

        # API Key in env
        os.environ[WANDB_ENV_VAR] = "9012"
        config["wandb"] = {"project": "test_project"}
        wrapped = wrap_function(train_fn)(config)

        # From now on, the API key is in the env variable.

        # Default configuration
        config["wandb"] = {"project": "test_project"}
        config[TRIAL_INFO] = trial_info

        wrapped = wrap_function(train_fn)(config)
        self.assertEqual(wrapped.wandb.kwargs["project"], "test_project")
        self.assertEqual(wrapped.wandb.kwargs["id"], trial.trial_id)
        self.assertEqual(wrapped.wandb.kwargs["name"], trial.trial_name)