Beispiel #1
0
def main():
    # Load dataset
    data, labels = datasets.load_breast_cancer(return_X_y=True)
    # Split into train and test set
    train_x, test_x, train_y, test_y = train_test_split(data,
                                                        labels,
                                                        test_size=0.25)

    train_set = RayDMatrix(train_x, train_y)
    test_set = RayDMatrix(test_x, test_y)

    # Set config
    config = {
        "tree_method": "approx",
        "objective": "binary:logistic",
        "eval_metric": ["logloss", "error"],
        "max_depth": 3,
    }

    evals_result = {}

    # Train the classifier
    bst = train(config,
                train_set,
                evals=[(test_set, "eval")],
                evals_result=evals_result,
                ray_params=RayParams(max_actor_restarts=1),
                verbose_eval=False)

    bst.save_model("simple.xgb")
    print("Final validation error: {:.4f}".format(
        evals_result["eval"]["error"][-1]))
Beispiel #2
0
def train_model(config):
    # Load dataset
    data, labels = datasets.load_breast_cancer(return_X_y=True)
    # Split into train and test set
    train_x, test_x, train_y, test_y = train_test_split(data,
                                                        labels,
                                                        test_size=0.25)

    train_set = RayDMatrix(train_x, train_y)
    test_set = RayDMatrix(test_x, test_y)

    evals_result = {}
    bst = train(params=config,
                dtrain=train_set,
                evals=[(test_set, "eval")],
                evals_result=evals_result,
                verbose_eval=False,
                ray_params=RayParams(num_actors=num_actors,
                                     cpus_per_actor=num_cpus_per_actor))
    bst.save_model("model.xgb")