def __init__( self, input, n_visible=784, n_hidden=500, W=None, hbias=None, vbias=None, numpy_rng=None, transpose=False, theano_rng=None, weight_decay=0.0002, ): RBM.__init__( self, input=input, n_visible=n_visible, n_hidden=n_hidden, W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng, weight_decay=weight_decay, )
def __init__(self, input=None, n_visible=784, n_hidden=500, W=None, h_bias=None, v_bias=None, numpy_rng=None, theano_rng=None): """ GBRBM constructor. Defines the parameters of the model along with basic operations for inferring hidden from visible (and vice-versa). It initialize parent class (RBM). :param input: None for standalone RBMs or symbolic variable if RBM is part of a larger graph. :param n_visible: number of visible units :param n_hidden: number of hidden units :param W: None for standalone RBMs or symbolic variable pointing to a shared weight matrix in case RBM is part of a DBN network; in a DBN, the weights are shared between RBMs and layers of a MLP :param h_bias: None for standalone RBMs or symbolic variable pointing to a shared hidden units bias vector in case RBM is part of a different network :param v_bias: None for standalone RBMs or a symbolic variable pointing to a shared visible units bias """ RBM.__init__( self, input=input, n_visible=n_visible, n_hidden=n_hidden, W=W, h_bias=h_bias, v_bias=v_bias, numpy_rng=numpy_rng, theano_rng=theano_rng)
def __init__( self, input, n_in=784, n_hidden=500, W=None, hbias=None, vbias=None, numpy_rng=None, transpose=False, activation=T.nnet.sigmoid, theano_rng=None, name="grbm", W_r=None, dropout=0, dropconnect=0, ): # initialize parent class (RBM) RBM.__init__( self, input=input, n_visible=n_in, n_hidden=n_hidden, W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng, )
def __init__(self, input, n_in, n_out, rng=None, W=None, vbias=None, hbias=None): self.input = input self.n_in = n_in self.n_out = n_out RBM.__init__(self, self.input, n_visible=self.n_in, n_hidden=self.n_out, W=W, vbias=vbias, hbias=hbias) if rng is None: numpy_rng = np.random.RandomState(1234) rng = MRG_RandomStreams(numpy_rng.randint(2**30)) self.theano_rng = rng self.output = self.sample_h_given_v(self.input)[2] self.feedbackward = self.gibbs_vhv(self.input)[2]
def __init__(self, input, n_in=784, n_hidden=500, \ W=None, hbias=None, vbias=None, numpy_rng=None, transpose=False, activation=T.nnet.sigmoid, theano_rng=None, name='grbm', W_r=None, dropout=0, dropconnect=0): # initialize parent class (RBM) RBM.__init__(self, input=input, n_visible=n_in, n_hidden=n_hidden, \ W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng)
def __init__(self, input, n_visible=784, n_hidden=500, W=None, hbias=None, vbias=None, numpy_rng=None, theano_rng=None): # initialize parent class (RBM) # RBM.__init__(self, input=input, n_visible=n_in, n_hidden=n_hidden, activation=activation, # W=W, hbias=hbias, vbias=vbias, transpose=transpose, numpy_rng=numpy_rng, # theano_rng=theano_rng, name=name, dropout=dropout, dropconnect=dropconnect) RBM.__init__(self, input=input, n_visible=n_visible, n_hidden=n_hidden, W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng)
def __init__(self, n_visible, n_hidden, sample_visible=False, sigma=1, **kwargs): self.sample_visible = sample_visible self.sigma = sigma RBM.__init__(self, n_visible, n_hidden, **kwargs)
def __init__(self, input, n_visible=16, n_hidden=20, W=None, hbias=None, vbias=None, numpy_rng=None, theano_rng=None): # initialize parent class (RBM) RBM.__init__(self, input=input, n_visible=n_visible, n_hidden=n_hidden, W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng)
def __init__(self, input, n_hid, n_vis, Wp=None, W=None, hbias=None, vbias=None): # build parameters of Shifted RBM RBM.__init__(self, input, n_visible=n_vis, n_hidden=n_hid, W=W, hbias=hbias, vbias=vbias)
def __init__(self, n_visible, n_hidden, sample_visible=False, sigma=1, l1=0.0, **kwargs): # self.train_sigma = train_sigma # if train_sigma: # self.sigma = tf.Variable(sigma*tf.ones([n_visible]), dtype=tf.float32) # self.delta_sigma = tf.Variable(tf.zeros([n_visible]), dtype=tf.float32) # else: # self.sigma = sigma self.l1 = l1 self.lr_penalty = 1 RBM.__init__(self, n_visible, n_hidden, **kwargs)
def __init__(self, *args, **kwargs): RBM.__init__(self, *args, **kwargs) self.temp = 1
def __init__(self, input, n_visible=784, n_hidden=500, \ W=None, hbias=None, vbias=None, numpy_rng=None, transpose=False, theano_rng=None, weight_decay=0.0002): RBM.__init__(self, input=input, n_visible=n_visible, n_hidden=n_hidden, \ W=W, hbias=hbias, vbias=vbias, numpy_rng=numpy_rng, theano_rng=theano_rng, weight_decay=weight_decay)
def __init__(self, *args, **kwargs): RBM.__init__(self, *args, **kwargs)
def __init__(self, input, n_visible, n_hidden): RBM.__init__(self, input=input, n_visible=n_visible, n_hidden=n_hidden)