Beispiel #1
0
    def build_finetune_functions(self, train_set, valid_set, test_set, batch_size, learning_rate):
        '''
            Generates a function `train` that implements one step of
            finetuning, a function `validate` that computes the error on a
            batch from the validation set, and a function `test` that
            computes the error on a batch from the testing set

            :type datasets: list of pairs of theano.tensor.TensorType
            :param datasets: It is a list that contain all the datasets;
                        the has to contain three pairs, `train`,
                        `valid`, `test` in this order, where each pair
                        is formed of two Theano variables, one for the
                        datapoints, the other for the labels
            :type batch_size: int
            :param batch_size: size of a minibatch
            :type learning_rate: float
            :param learning_rate: learning rate used during finetune stage
        '''

        (train_set_x, train_set_y) = shared_dataset(train_set)
        (valid_set_x, valid_set_y) = shared_dataset(valid_set)
        (test_set_x, test_set_y) = shared_dataset(test_set)

        # compute number of minibatchs for training, validataion and testing
        n_valid_batchs = valid_set_x.get_value(borrow=True).shape[0]
        n_valid_batchs /= batch_size
        n_test_batchs = test_set_x.get_value(borrow=True).shape[0]
        n_test_batchs /= batch_size

        index = T.lscalar('index')      # index to a [mini]batch

        gparams = T.grad(self.finetune_cost, self.params)

        updates = []
        for param, gparams in zip(self.params, gparams):
            updates.append((param, param - learning_rate * gparams))

        train_fn = theano.function(inputs=[index], outputs=self.finetune_cost, updates=updates,
                                   givens={self.x: train_set_x[index*batch_size:(index+1)*batch_size],
                                           self.y: train_set_y[index*batch_size:(index+1)*batch_size]
                                          }
                                   )

        test_score_i = theano.function([index], self.errors,
                                       givens={self.x: valid_set_x[index*batch_size:(index+1)*batch_size],
                                               self.y: valid_set_y[index*batch_size:(index+1)*batch_size]}
                                       )

        valid_score_i = theano.function([index], self.errors,
                                        givens={self.x: test_set_x[index*batch_size:(index+1)*batch_size],
                                                self.y: test_set_y[index*batch_size:(index+1)*batch_size]}
                                        )

        def valid_score():
            return [valid_score_i(i) for i in xrange(n_valid_batchs)]

        def test_score():
            return [test_score_i(i) for i in xrange(n_test_batchs)]

        return train_fn, valid_score, test_score
Beispiel #2
0
def test_DBN(finetune_lr=0.1, pretraining_epochs=100,
             pretrain_lr=0.01, k=1, training_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=10):
    """
    Demonstrates how to train and test a Deep Belief Network.

    This is demonstrated on MNIST.

    :type finetune_lr: float
    :param finetune_lr: learning rate used in the finetune stage
    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining
    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training
    :type k: int
    :param k: number of Gibbs steps in CD/PCD
    :type training_epochs: int
    :param training_epochs: maximal number of iterations ot run the optimizer
    :type dataset: string
    :param dataset: path the the pickled dataset
    :type batch_size: int
    :param batch_size: the size of a minibatch
    """
    with gzip.open('/home/aurora/workspace/PycharmProjects/data/MNIST/mnist.pkl.gz', 'rb') as f:
        train_set, validate_set, test_set = cPickle.load(f)
    train_set_x, train_set_y = shared_dataset(train_set, borrow=True)
    valid_set_x, valid_set_y = shared_dataset(validate_set, borrow=True)
    test_set_x, test_set_y = shared_dataset(test_set, borrow=True)

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # numpy random generator
    numpy_rng = numpy.random.RandomState(123)
    print '... building the model'
    # construct the Deep Belief Network
    dbn = DBN(numpy_rng=numpy_rng, n_ins=28 * 28,
              hidden_layers_sizes=[1000, 1000, 1000],
              n_outs=10)

    # start-snippet-2
    #########################
    # PRETRAINING THE MODEL #
    #########################
    print '... getting the pretraining functions'
    pretraining_fns = dbn.pretraining_functions(train_set_x=train_set_x,
                                                batch_size=batch_size,
                                                k=k)

    print '... pre-training the model'
    start_time = timeit.default_timer()
    ## Pre-train layer-wise
    for i in xrange(dbn.n_layers):
        # go through pretraining epochs
        for epoch in xrange(pretraining_epochs):
            # go through the training set
            c = []
            for batch_index in xrange(n_train_batches):
                c.append(pretraining_fns[i](index=batch_index,
                                            lr=pretrain_lr))
            print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
            print numpy.mean(c)

    end_time = timeit.default_timer()
    # end-snippet-2
    print >> sys.stderr, ('The pretraining code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
    ########################
    # FINETUNING THE MODEL #
    ########################

    # get the training, validation and testing function for the model
    print '... getting the finetuning functions'
    train_fn, validate_model, test_model = dbn.build_finetune_functions(
        datasets=datasets,
        batch_size=batch_size,
        learning_rate=finetune_lr
    )

    print '... finetuning the model'
    # early-stopping parameters
    patience = 4 * n_train_batches  # look as this many examples regardless
    patience_increase = 2.    # wait this much longer when a new best is
                              # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatches before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = timeit.default_timer()

    done_looping = False
    epoch = 0

    while (epoch < training_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_fn(minibatch_index)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:

                validation_losses = validate_model()
                this_validation_loss = numpy.mean(validation_losses)
                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%'
                    % (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = test_model()
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print(
        (
            'Optimization complete with best validation score of %f %%, '
            'obtained at iteration %i, '
            'with test performance %f %%'
        ) % (best_validation_loss * 100., best_iter + 1, test_score * 100.)
    )
    print >> sys.stderr, ('The fine tuning code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time)
                                              / 60.))