def __init__(self, model_path: str, name: str, input_size: Tuple[int] = (128, 256), **kwargs): super(DGNetEncoder).__init__() self.name = name self.model = ft_netAB(751, norm=False, stride=1, pool='max') state_dict = torch.load(model_path) self.model.load_state_dict(state_dict['a'], strict=False) self.model.classifier1.classifier = nn.Sequential() self.model.classifier2.classifier = nn.Sequential() self.model = self.model.eval().cuda() self.size = input_size self.transform = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) """
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() lr_g = hyperparameters['lr_g'] #生成器学习率 lr_d = hyperparameters['lr_d'] #判别器学习率 ID_class = hyperparameters['ID_class'] if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. # 构建Es编码+解码过程 gen_a.encode()可以进行编码,gen_b.encode()可以进行解码 self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16 = False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b # ID_stride,外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # 构建外观编码器 if hyperparameters['ID_style']=='PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style']=='AB': #使用的AB编码器 self.id_a = ft_netAB(ID_class, stride = hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now # 浅拷贝,两者等同 self.id_b = self.id_a # 鉴别器,使用的是一个多尺寸的鉴别器,即对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16 = False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b # load teachers 加载教师模型 if hyperparameters['teacher'] != "": teacher_name = hyperparameters['teacher'] print(teacher_name) # 构建教师模型 teacher_names = teacher_name.split(',') teacher_model = nn.ModuleList() teacher_count = 0 for teacher_name in teacher_names: config_tmp = load_config(teacher_name) if 'stride' in config_tmp: stride = config_tmp['stride'] else: stride = 2 # 网络搭建 model_tmp = ft_net(ID_class, stride = stride) teacher_model_tmp = load_network(model_tmp, teacher_name) teacher_model_tmp.model.fc = nn.Sequential() # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval()) teacher_count +=1 self.teacher_model = teacher_model # 选择是否使用bn if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel if hyperparameters['single']=='edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] # erasing_p表示随机擦除的概率 # 随机擦除矩形区域的一些像素,数据增强 self.single_re = RandomErasing(probability = self.erasing_p, mean=[0.0, 0.0, 0.0]) if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 # Setup the optimizers 设置优化器的参数 beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list(self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list(self.gen_a.parameters()) #+ list(self.gen_b.parameters()) # 使用Adam优化器 self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params if hyperparameters['ID_style']=='PCB': ignored_params = (list(map(id, self.id_a.classifier0.parameters() )) +list(map(id, self.id_a.classifier1.parameters() )) +list(map(id, self.id_a.classifier2.parameters() )) +list(map(id, self.id_a.classifier3.parameters() )) ) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier0.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier1.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier2.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier3.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) elif hyperparameters['ID_style']=='AB': ignored_params = (list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) # 获得基本的配置参数,如学习率 base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier1.parameters(), 'lr': lr2*10}, {'params': self.id_a.classifier2.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters() )) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD([ {'params': base_params, 'lr': lr2}, {'params': self.id_a.classifier.parameters(), 'lr': lr2*10} ], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 选择各个网络优化的策略 self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss self.id_criterion = nn.CrossEntropyLoss() self.criterion_teacher = nn.KLDivLoss(size_average=False) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
return f ################################################################### # ###################################################################### # Load Collected data Trained model ###load config### config_path = os.path.join('G:/pose-estimation/tracking/reid/outputs', name, 'config.yaml') with open(config_path, 'r') as stream: config = yaml.load(stream) model_structure = ft_netAB(config['ID_class'], norm=config['norm_id'], stride=config['ID_stride'], pool=config['pool']) if opt.PCB: model_structure = PCB(config['ID_class']) model = load_network(model_structure) # Remove the final fc layer and classifier layer model.model.fc = nn.Sequential() model.classifier1.classifier = nn.Sequential() model.classifier2.classifier = nn.Sequential() # Change to test mode model = model.eval() if use_gpu:
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() # 从配置文件获取生成模型和鉴别模型的学习率 lr_g = hyperparameters['lr_g'] lr_d = hyperparameters['lr_d'] # ID 类别 ID_class = hyperparameters['ID_class'] # 是否设置使用fp16, if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16=False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b ''' ft_netAB : Ea ''' # ID_stride: 外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # id_a : 外观编码器 -> Ea if hyperparameters['ID_style'] == 'PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style'] == 'AB': self.id_a = ft_netAB(ID_class, stride=hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now self.id_b = self.id_a # 对图片b的操作与图片a的操作一致 # 判别器,使用的是一个多尺寸的判别器,就是对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 # 经过网络3个缩放,,分别为:[batch_size, 1, 64, 32],[batch_size, 1, 32, 16],[batch_size, 1, 16, 8] self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16=False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b # load teachers if hyperparameters['teacher'] != "": teacher_name = hyperparameters['teacher'] print(teacher_name) # 加载多个老师模型 teacher_names = teacher_name.split(',') # 构建老师模型 teacher_model = nn.ModuleList() # 初始化为空,接下来开始填充 teacher_count = 0 for teacher_name in teacher_names: config_tmp = load_config(teacher_name) # 池化层的stride if 'stride' in config_tmp: stride = config_tmp['stride'] else: stride = 2 # 开始搭建网络 model_tmp = ft_net(ID_class, stride=stride) teacher_model_tmp = load_network(model_tmp, teacher_name) teacher_model_tmp.model.fc = nn.Sequential( ) # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() # teacher_model_tmp,[3, 224, 224] # 使用fp16 if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval( )) # 第一个填充为 teacher_model_tmp.cuda().eval() teacher_count += 1 self.teacher_model = teacher_model # 是否使用batchnorm if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel # 因为Es 需要使用灰度图, 所以single 用来将图片转化为灰度图 if hyperparameters['single'] == 'edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training # arasing_p 随机擦除的概率 if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] # 对图片中的某一随机区域进行擦除,具体:将该区域的像素值设置为均值 self.single_re = RandomErasing(probability=self.erasing_p, mean=[0.0, 0.0, 0.0]) if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 # Setup the optimizers beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list( self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list( self.gen_a.parameters()) #+ list(self.gen_b.parameters()) self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params # 修改 id_a模型中分类器的学习率 if hyperparameters['ID_style'] == 'PCB': ignored_params = ( list(map(id, self.id_a.classifier0.parameters())) + list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters())) + list(map(id, self.id_a.classifier3.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier0.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier3.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) elif hyperparameters['ID_style'] == 'AB': ignored_params = ( list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 生成器和判别器中的优化策略(学习率的更新策略) self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss self.id_criterion = nn.CrossEntropyLoss() self.criterion_teacher = nn.KLDivLoss( size_average=False) # 生成主要特征: Lprim # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory # 保存当前的模型,是为了提高计算效率 if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
def __init__(self, hyperparameters, gpu_ids=[0]): super(DGNet_Trainer, self).__init__() # 从配置文件获取生成模型的和鉴别模型的学习率 lr_g = hyperparameters['lr_g'] lr_d = hyperparameters['lr_d'] # # ID的类别,这里要注意,不同的数据集都是不一样的,应该是训练数据集的ID数目,非测试集 ID_class = hyperparameters['ID_class'] # 看是否设置使用float16,估计float16可以增加精确度 if not 'apex' in hyperparameters.keys(): hyperparameters['apex'] = False self.fp16 = hyperparameters['apex'] # Initiate the networks # We do not need to manually set fp16 in the network for the new apex. So here I set fp16=False. ################################################################################################################ ##这里是定义Es和G # 注意这里包含了两个步骤,Es编码+解码过程,既然解码(论文Figure 2的黄色梯形G)包含到这里了,下面Ea应该不会包含解码过程了 # 因为这里是一个类,如后续gen_a.encode()可以进行编码,gen_b.encode()可以进行解码 self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'], fp16=False) # auto-encoder for domain a self.gen_b = self.gen_a # auto-encoder for domain b ############################################################################################################################################ ############################################################################################################################################ ##这里是定义Ea # ID_stride,外观编码器池化层的stride if not 'ID_stride' in hyperparameters.keys(): hyperparameters['ID_stride'] = 2 # hyperparameters['ID_style']默认为'AB',论文中的Ea编码器 #这里是设置Ea,有三种模型可以选择 #PCB模型,ft_netAB为改造后的resnet50,ft_net为resnet50 if hyperparameters['ID_style'] == 'PCB': self.id_a = PCB(ID_class) elif hyperparameters['ID_style'] == 'AB': # 这是我们执行的模型,注意的是,id_a返回两个x(表示身份),获得f,具体介绍看函数内部 # 我们使用的是ft_netAB,是代码中Ea编码的过程,也就得到 ap code的过程,除了ap code还会得到两个分类结果 # 现在怀疑,该分类结果,可能就是行人重识别的结果 #ID_class表示有ID_class个不同ID的行人 self.id_a = ft_netAB(ID_class, stride=hyperparameters['ID_stride'], norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) else: self.id_a = ft_net(ID_class, norm=hyperparameters['norm_id'], pool=hyperparameters['pool']) # return 2048 now # 这里进行的是浅拷贝,所以我认为他们的权重是一起的,可以理解为一个 self.id_b = self.id_a ############################################################################################################################################################ ############################################################################################################################################################ ##这里是定义D # 鉴别器,行人重识别,这里使用的是一个多尺寸的鉴别器,大概就是说,对图片进行几次缩放,并且对每次缩放都会预测,计算总的损失 # 经过网络3个元素,分别大小为[batch_size,1,64,32], [batch_size,1,32,16], [batch_size,1,16,8] self.dis_a = MsImageDis(3, hyperparameters['dis'], fp16=False) # discriminator for domain a self.dis_b = self.dis_a # discriminator for domain b ############################################################################################################################################################ ############################################################################################################################################################ # load teachers # 加载老师模型 # teacher:老师模型名称。对于DukeMTMC,您可以设置“best - duke” if hyperparameters['teacher'] != "": #teacher_name=best teacher_name = hyperparameters['teacher'] print(teacher_name) #有这个操作,我怀疑是可以加载多个教师模型 teacher_names = teacher_name.split(',') #构建老师模型 teacher_model = nn.ModuleList() teacher_count = 0 # 默认只有一个teacher_name='teacher_name',所以其加载的模型配置文件为项目根目录models/best/opts.yaml模型 for teacher_name in teacher_names: # 加载配置文件models/best/opts.yaml config_tmp = load_config(teacher_name) if 'stride' in config_tmp: #stride=1 stride = config_tmp['stride'] else: stride = 2 # 老师模型加载,老师模型为ft_net为resnet50 model_tmp = ft_net(ID_class, stride=stride) teacher_model_tmp = load_network(model_tmp, teacher_name) # 移除原本的全连接层 teacher_model_tmp.model.fc = nn.Sequential( ) # remove the original fc layer in ImageNet teacher_model_tmp = teacher_model_tmp.cuda() # summary(teacher_model_tmp, (3, 224, 224)) #使用浮点型 if self.fp16: teacher_model_tmp = amp.initialize(teacher_model_tmp, opt_level="O1") teacher_model.append(teacher_model_tmp.cuda().eval()) teacher_count += 1 self.teacher_model = teacher_model # 选择是否使用bn if hyperparameters['train_bn']: self.teacher_model = self.teacher_model.apply(train_bn) ############################################################################################################################################################ # 实例正则化 self.instancenorm = nn.InstanceNorm2d(512, affine=False) # RGB to one channel # 默认设置signal=gray,Es的输入为灰度图 if hyperparameters['single'] == 'edge': self.single = to_edge else: self.single = to_gray(False) # Random Erasing when training #earsing_p表示随机擦除的概率 if not 'erasing_p' in hyperparameters.keys(): self.erasing_p = 0 else: self.erasing_p = hyperparameters['erasing_p'] #随机擦除矩形区域的一些像素,应该类似于数据增强 self.single_re = RandomErasing(probability=self.erasing_p, mean=[0.0, 0.0, 0.0]) # 设置T_w为1,T_w为primary feature learning loss的权重系数 if not 'T_w' in hyperparameters.keys(): hyperparameters['T_w'] = 1 ################################################################################################ # Setup the optimizers # 设置优化器参数 beta1 = hyperparameters['beta1'] beta2 = hyperparameters['beta2'] dis_params = list( self.dis_a.parameters()) #+ list(self.dis_b.parameters()) gen_params = list( self.gen_a.parameters()) #+ list(self.gen_b.parameters()) #使用Adams优化器,用Adams训练Es,G,D self.dis_opt = torch.optim.Adam( [p for p in dis_params if p.requires_grad], lr=lr_d, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) self.gen_opt = torch.optim.Adam( [p for p in gen_params if p.requires_grad], lr=lr_g, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay']) # id params # 因为ID_style默认为AB,所以这里不执行 if hyperparameters['ID_style'] == 'PCB': ignored_params = ( list(map(id, self.id_a.classifier0.parameters())) + list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters())) + list(map(id, self.id_a.classifier3.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] #Ea 的优化器 self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier0.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier3.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 这里是我们执行的代码 elif hyperparameters['ID_style'] == 'AB': # 忽略的参数,应该是适用于'PCB'或者其他的,但是不适用于'AB'的 ignored_params = ( list(map(id, self.id_a.classifier1.parameters())) + list(map(id, self.id_a.classifier2.parameters()))) # 获得基本的配置参数,如学习率 base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] #对Ea使用SGD self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier1.parameters(), 'lr': lr2 * 10 }, { 'params': self.id_a.classifier2.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) else: ignored_params = list(map(id, self.id_a.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, self.id_a.parameters()) lr2 = hyperparameters['lr2'] self.id_opt = torch.optim.SGD( [{ 'params': base_params, 'lr': lr2 }, { 'params': self.id_a.classifier.parameters(), 'lr': lr2 * 10 }], weight_decay=hyperparameters['weight_decay'], momentum=0.9, nesterov=True) # 选择各个网络的优化 self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters) self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters) self.id_scheduler = get_scheduler(self.id_opt, hyperparameters) self.id_scheduler.gamma = hyperparameters['gamma2'] #ID Loss #交叉熵损失函数 self.id_criterion = nn.CrossEntropyLoss() # KL散度 self.criterion_teacher = nn.KLDivLoss(size_average=False) # Load VGG model if needed if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0: self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models') self.vgg.eval() for param in self.vgg.parameters(): param.requires_grad = False # save memory if self.fp16: # Name the FP16_Optimizer instance to replace the existing optimizer assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled." self.gen_a = self.gen_a.cuda() self.dis_a = self.dis_a.cuda() self.id_a = self.id_a.cuda() self.gen_b = self.gen_a self.dis_b = self.dis_a self.id_b = self.id_a self.gen_a, self.gen_opt = amp.initialize(self.gen_a, self.gen_opt, opt_level="O1") self.dis_a, self.dis_opt = amp.initialize(self.dis_a, self.dis_opt, opt_level="O1") self.id_a, self.id_opt = amp.initialize(self.id_a, self.id_opt, opt_level="O1")
gallery_cam,gallery_label = get_id(gallery_path) query_cam,query_label = get_id(query_path) ###################################################################### # Load Collected data Trained model print('-------test-----------') ###load config### config_path = os.path.join('../outputs',name,'config.yaml') with open(config_path, 'r') as stream: config = yaml.load(stream) model_path, output_dim = get_model_stats() model_structure = ft_netAB(output_dim, norm=config['norm_id'], stride=config['ID_stride'], pool=config['pool']) model = load_network(model_structure, model_path) # Remove the final fc layer and classifier layer model.model.fc = nn.Sequential() model.classifier1.classifier = nn.Sequential() model.classifier2.classifier = nn.Sequential() # Change to test mode model = model.eval() if use_gpu: model = model.cuda() # Extract feature with torch.no_grad():