def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(VIPeR, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip'
        self.cam_a_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_a')
        self.cam_b_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_b')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self.download_data()

        required_files = [self.dataset_dir, self.cam_a_dir, self.cam_b_dir]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']  # note: query and gallery share the same images
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(PRID, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.cam_a_dir = osp.join(self.dataset_dir, 'prid_2011', 'single_shot',
                                  'cam_a')
        self.cam_b_dir = osp.join(self.dataset_dir, 'prid_2011', 'single_shot',
                                  'cam_b')
        self.split_path = osp.join(self.dataset_dir, 'splits_single_shot.json')

        required_files = [self.dataset_dir, self.cam_a_dir, self.cam_b_dir]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train, query, gallery = self.process_split(split)

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(CUHK01, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.zip_path = osp.join(self.dataset_dir, 'CUHK01.zip')
        self.campus_dir = osp.join(self.dataset_dir, 'campus')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self.extract_file()

        required_files = [self.dataset_dir, self.campus_dir]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
Beispiel #4
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(iLIDS, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.dataset_url = 'http://www.eecs.qmul.ac.uk/~jason/data/i-LIDS_Pedestrian.tgz'
        self.data_dir = osp.join(self.dataset_dir, 'i-LIDS_Pedestrian/Persons')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self.download_data()

        required_files = [self.dataset_dir, self.data_dir]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train, query, gallery = self.process_split(split)

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
    def __init__(self,
                 root='data',
                 split_id=0,
                 min_seq_len=0,
                 verbose=True,
                 **kwargs):
        super(PRID2011, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json')
        self.cam_a_dir = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot',
                                  'cam_a')
        self.cam_b_dir = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot',
                                  'cam_b')

        required_files = [self.dataset_dir, self.cam_a_dir, self.cam_b_dir]
        self.check_before_run(required_files)

        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']

        train = self.process_dir(train_dirs, cam1=True, cam2=True)
        query = self.process_dir(test_dirs, cam1=True, cam2=False)
        gallery = self.process_dir(test_dirs, cam1=False, cam2=True)

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
Beispiel #6
0
    def __init__(self,
                 root='data',
                 split_id=0,
                 cuhk03_labeled=False,
                 cuhk03_classic_split=False,
                 verbose=True,
                 **kwargs):
        super(CUHK03, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.data_dir = osp.join(self.dataset_dir, 'cuhk03_release')
        self.raw_mat_path = osp.join(self.data_dir, 'cuhk-03.mat')

        self.imgs_detected_dir = osp.join(self.dataset_dir, 'images_detected')
        self.imgs_labeled_dir = osp.join(self.dataset_dir, 'images_labeled')

        self.split_classic_det_json_path = osp.join(
            self.dataset_dir, 'splits_classic_detected.json')
        self.split_classic_lab_json_path = osp.join(
            self.dataset_dir, 'splits_classic_labeled.json')

        self.split_new_det_json_path = osp.join(self.dataset_dir,
                                                'splits_new_detected.json')
        self.split_new_lab_json_path = osp.join(self.dataset_dir,
                                                'splits_new_labeled.json')

        self.split_new_det_mat_path = osp.join(
            self.dataset_dir, 'cuhk03_new_protocol_config_detected.mat')
        self.split_new_lab_mat_path = osp.join(
            self.dataset_dir, 'cuhk03_new_protocol_config_labeled.mat')

        required_files = [
            self.dataset_dir, self.data_dir, self.raw_mat_path,
            self.split_new_det_mat_path, self.split_new_lab_mat_path
        ]
        self.check_before_run(required_files)

        self.preprocess_split()

        if cuhk03_labeled:
            split_path = self.split_classic_lab_json_path if cuhk03_classic_split else self.split_new_lab_json_path
        else:
            split_path = self.split_classic_det_json_path if cuhk03_classic_split else self.split_new_det_json_path

        splits = read_json(split_path)
        assert split_id < len(
            splits
        ), 'Condition split_id ({}) < len(splits) ({}) is false'.format(
            split_id, len(splits))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
    def process_dir(self, dir_path, json_path, relabel):
        if osp.exists(json_path):
            split = read_json(json_path)
            return split['tracklets']

        print('=> Generating split json file (** this might take a while **)')
        pdirs = glob.glob(osp.join(dir_path, '*'))  # avoid .DS_Store
        print('Processing "{}" with {} person identities'.format(
            dir_path, len(pdirs)))

        pid_container = set()
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            pid_container.add(pid)
        pid2label = {pid: label for label, pid in enumerate(pid_container)}

        tracklets = []
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            if relabel:
                pid = pid2label[pid]
            tdirs = glob.glob(osp.join(pdir, '*'))
            for tdir in tdirs:
                raw_img_paths = glob.glob(osp.join(tdir, '*.jpg'))
                num_imgs = len(raw_img_paths)

                if num_imgs < self.min_seq_len:
                    continue

                img_paths = []
                for img_idx in range(num_imgs):
                    # some tracklet starts from 0002 instead of 0001
                    img_idx_name = 'F' + str(img_idx + 1).zfill(4)
                    res = glob.glob(
                        osp.join(tdir, '*' + img_idx_name + '*.jpg'))
                    if len(res) == 0:
                        print(
                            'Warn: index name {} in {} is missing, jump to next'
                            .format(img_idx_name, tdir))
                        continue
                    img_paths.append(res[0])
                img_name = osp.basename(img_paths[0])
                if img_name.find('_') == -1:
                    # old naming format: 0001C6F0099X30823.jpg
                    camid = int(img_name[5]) - 1
                else:
                    # new naming format: 0001_C6_F0099_X30823.jpg
                    camid = int(img_name[6]) - 1
                img_paths = tuple(img_paths)
                tracklets.append((img_paths, pid, camid))

        print('Saving split to {}'.format(json_path))
        split_dict = {
            'tracklets': tracklets,
        }
        write_json(split_dict, json_path)

        return tracklets
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(GRID, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.dataset_url = 'http://personal.ie.cuhk.edu.hk/~ccloy/files/datasets/underground_reid.zip'
        self.probe_path = osp.join(self.dataset_dir, 'underground_reid',
                                   'probe')
        self.gallery_path = osp.join(self.dataset_dir, 'underground_reid',
                                     'gallery')
        self.split_mat_path = osp.join(self.dataset_dir, 'underground_reid',
                                       'features_and_partitions.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')

        self.download_data()

        required_files = [
            self.dataset_dir, self.probe_path, self.gallery_path,
            self.split_mat_path
        ]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
Beispiel #9
0
    def __init__(self,
                 root='data',
                 split_id=0,
                 min_seq_len=0,
                 verbose=True,
                 **kwargs):
        super(PRID450S, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.dataset_url = 'https://files.icg.tugraz.at/f/8c709245bb/?raw=1'
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_a_dir = osp.join(self.dataset_dir, 'cam_a')
        self.cam_b_dir = osp.join(self.dataset_dir, 'cam_b')

        self.download_data()

        required_files = [self.dataset_dir, self.cam_a_dir, self.cam_b_dir]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'
                .format(split_id,
                        len(splits) - 1))
        split = splits[split_id]

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        train = [tuple(item) for item in train]
        query = [tuple(item) for item in query]
        gallery = [tuple(item) for item in gallery]

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)
Beispiel #10
0
    def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
        super(iLIDSVID, self).__init__(root)
        self.dataset_dir = osp.join(self.root, self.dataset_dir)
        self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar'
        self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID')
        self.split_dir = osp.join(self.dataset_dir, 'train-test people splits')
        self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam1')
        self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam2')

        self.download_data()

        required_files = [
            self.dataset_dir,
            self.data_dir,
            self.split_dir
        ]
        self.check_before_run(required_files)

        self.prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError(
                'split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits) - 1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']

        train = self.process_data(train_dirs, cam1=True, cam2=True)
        query = self.process_data(test_dirs, cam1=True, cam2=False)
        gallery = self.process_data(test_dirs, cam1=False, cam2=True)

        self.init_attributes(train, query, gallery, **kwargs)

        if verbose:
            self.print_dataset_statistics(self.train, self.query, self.gallery)