def draw_tries_log_solved_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(np.log10(solved)),
               np.array(tries),
               xlbl="log10(solved)",
               ylbl="avg_tries",
               xlim=(None, None),
               ylim=(0, 20),
               alphas=[0.01])
def draw_log_solved_level_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.log10(np.array(solved)),
               np.array(level),
               xlbl="log10(solved)",
               ylbl="level",
               alphas=[0.05],
               trend_func=axb,
               ttl="level - log(solved)")
def draw_tries_solved_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(solved),
               np.array(tries),
               xlbl="solved",
               ylbl="avg_tries",
               xlim=(0, 15000),
               ylim=(0, 20),
               alphas=[0.01])
def draw_solved_level_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(solved),
               np.array(level),
               xlbl="solved",
               ylbl="level",
               xlim=(None, 50000),
               alphas=[0.03],
               ttl="level - solved")
def draw_log_tries_log_solved_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(np.log10(solved)),
               np.array(np.log10(tries)),
               xlbl="log10(solved)",
               ylbl="log10(avg_tries)",
               xlim=(None, 5),
               ylim=(None, 1.5),
               alphas=[0.02])
def draw_log_tries_level_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(np.log10(tries)),
               np.array(level),
               xlbl="log10(avg_tries)",
               ylbl="level",
               ylim=(0, 30),
               alphas=[0.02],
               trend_func=axb,
               ttl="level - log(avg_tries)")
def draw_tries_level_plot(dirname):
    level, solved, tries = read_csvs(dirname)
    plot_trend(np.array(tries),
               np.array(level),
               xlbl="avg_tries",
               ylbl="level",
               xlim=(0, 15),
               ylim=(0, 30),
               alphas=[0.02],
               ttl="level - avg_tries")
def plot_total_level_calculated_level(dirname,
                                      f,
                                      popt,
                                      alpha=0.01,
                                      unzip=True,
                                      **kwargs):
    level, solved, tries = read_csvs(dirname)
    plot_level_calculated_level(np.array(level),
                                (np.array(solved), np.array(tries)),
                                f,
                                popt,
                                alpha,
                                unzip=unzip,
                                **kwargs)
def get_trend_level_log_solved_log_tries(dirname, needed_ppl=1):
    level, solved, tries = read_csvs(dirname, needed_ppl)
    popt, r_squared = get_popt_R2(axbyc_log, (solved, tries), level)
    calculated_level = np.array(axbyc_log((solved, tries), *popt))
    new_calculated_level = calculated_level * 2 - 15
    print("popt :", popt, ", R^2 :", r_squared)
    print("Average difference: " +
          str(np.mean(abs(np.array(level) - calculated_level))))
    #print("Average difference(new): " + str(np.mean(abs(np.array(level) - new_calculated_level))))
    #print("Average difference(mean):" + str(np.mean(abs(np.array(level) - np.mean(np.array(level))))))
    print("Average square: " +
          str(np.mean(np.square(np.array(level) - calculated_level))))
    #print("Average square(new): " + str(np.mean(np.square(np.array(level) - new_calculated_level))))
    #print("Average square(mean): " + str(np.mean(np.square(np.array(level) - np.mean(np.array(level))))))
    lnspace = np.arange(1, 30, 29 / 100)
    plot_xys([level, lnspace], [calculated_level, lnspace],
             styles=['o', '-'],
             xlbl="Real level",
             ylbl="Calculated level",
             xlim=(0, 31),
             ylim=(0, 31),
             alphas=[0.01, 1])
Beispiel #10
0
def draw_calculated_level_log_solved_log_tries(dirname, a, b, c):
    K = 100
    xmax = 5
    ymax = 1.4
    level, solved, tries = read_csvs(dirname)
    calculated_level = np.zeros([K, K])
    for i in range(K):
        for j in range(K):
            x = i * xmax / K
            y = j * ymax / K
            calculated_level[j][i] = a * x + b * y + c
    #print(level_avg)
    plt.imshow(calculated_level,
               cmap=plt.get_cmap('gist_ncar'),
               norm=Normalize(vmin=-4, vmax=42, clip=True),
               origin='lower',
               extent=[0, xmax, 0, ymax],
               aspect='auto')
    plt.title("level per log(avg_tries), log(solved)")
    plt.xlabel("log10(solved)")
    plt.ylabel("log10(avg_tries)")
    plt.colorbar()
    plt.show()