from matplotlib import rc import matplotlib.pyplot as plt # import pandas as pd import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" beta = -19.56 reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) free_energy = np.zeros(aspect.size) for i in range(aspect.size): free_energy[i] = reader.set_free_energy(aspect=aspect[i], beta=beta) enstrophy_constant = reader.set_enstrophy_constant(aspect=aspect[0], beta=beta) exp_E = reader.read_exp_E(beta=beta) exp_F = np.exp(-beta * (free_energy[:] - free_energy[0]) / enstrophy_constant) e_array = exp_E - exp_F
import matplotlib.pyplot as plt import pandas as pd # import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" xlim = [0, 200] ylim = [0.44, 0.48] reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) budget = reader.read_budget(number_time=420, ssh_flag=False) columns = [ 'T', 'E', 'E-first', 'E-diag', 'E-lower', 'E-upper', 'Q2', 'Q2-first', 'Q2-diag', 'Q2-lower', 'Q2-upper', 'PE' ] df = pd.DataFrame(data=budget, columns=columns) df = df.set_index('T') for col in df.columns.tolist(): df = df.rename(columns={col: reader.long_name(col)})
# -*- coding: utf-8 -*- # from matplotlib import rc import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np from read_data import ReadClass rc('text', usetex=True) rc('font', family='serif') setting_name = "setting" figure_dir = './figure/' reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) K_axis, L_axis = reader.set_axis() c_level = 64 for time in range(0, 11): it = time * reader.interval_write_variable str_it = '{0:04d}'.format(it) spec = reader.read_E_ave(it) energy_all = np.sum(spec)
# -*- coding: utf-8 -*- # from matplotlib import rc import matplotlib.pyplot as plt import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) beta = reader.beta N = (reader.NK_truncate - 1) * (reader.NL_truncate - 1) free_energy = np.zeros(aspect.size) for i in range(aspect.size): free_energy[i] = reader.set_free_energy(aspect=aspect[i], beta=beta) # enstrophy_constant = reader.set_enstrophy_constant(aspect=aspect[0], # beta=beta) exp_E = reader.read_exp_E(beta=beta, number_time=750, ssh_flag=False)
import matplotlib.pyplot as plt import pandas as pd # import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting_2" xlim = [0, 200] ylim = [0.003, 0.0035] reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) budget = reader.read_budget() columns = [ 'T', 'E', 'E-diag', 'E-lower', 'E-upper', 'Q2', 'Q2-diag', 'Q2-lower', 'Q2-upper', 'PE' ] df = pd.DataFrame(data=budget, columns=columns) df = df.set_index('T') for col in df.columns.tolist(): df = df.rename(columns={col: reader.long_name(col)})
import matplotlib.pyplot as plt import pandas as pd # import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting_3" xlim = [0, 200] ylim = [0.0028, 0.003] reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) budget = reader.read_budget(number_time=118, ssh_flag=True) columns = ['T', 'E', 'E-diag', 'E-lower', 'E-upper', 'Q2', 'Q2-diag', 'Q2-lower', 'Q2-upper', 'PE'] df = pd.DataFrame(data=budget, columns=columns) df = df.set_index('T') for col in df.columns.tolist(): df = df.rename(columns={col: reader.long_name(col)}) df.plot(y=[reader.long_name('E')],
import matplotlib.pyplot as plt import pandas as pd # import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" xlim = [0, 200] ylim = [1, 1.1] reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) budget = reader.read_budget(number_time=420, ssh_flag=True) columns = [ 'T', 'E', 'E-first', 'E-diag', 'E-lower', 'E-upper', 'Q2', 'Q2-first', 'Q2-diag', 'Q2-lower', 'Q2-upper', 'PE' ] df = pd.DataFrame(data=budget, columns=columns) df = df.set_index('T') for col in df.columns.tolist(): df = df.rename(columns={col: reader.long_name(col)})
# from matplotlib import rc import matplotlib.pyplot as plt # import pandas as pd import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) beta = reader.beta work = reader.read_work(beta=beta, number_time=201, ssh_flag=False) work_mean = work.mean(axis=1) time = np.zeros(work.shape) process = np.arange(work.shape[1]) for i in range(time.shape[0]): time[i, :] = i * reader.time_write
import matplotlib.pyplot as plt # import pandas as pd import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting_3" # xlim = [0, 200] # ylim = [0.0028, 0.003] reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) beta = reader.beta work = reader.read_work(beta=beta, number_time=125, ssh_flag=False) work_mean = work.mean(axis=1) free_energy = np.zeros(aspect.size) RDT_work = np.zeros(aspect.size) for i in range(aspect.size): free_energy[i] = reader.set_free_energy(aspect=aspect[i], beta=beta) RDT_work[i] = reader.set_RDT_work(aspect_0=aspect[0], aspect=aspect[i],
from matplotlib import rc import matplotlib.pyplot as plt # import pandas as pd import numpy as np from read_data import ReadClass plt.style.use('ggplot') rc('text', usetex=True) rc('font', family='serif') figure_dir = './figure/' setting_name = "setting" beta = -19.56 reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) N = (reader.NL_truncate-1) * (reader.NK_truncate-1) energy = np.zeros(aspect.size) Q2 = np.zeros([reader.NL_truncate, reader.NK_truncate, reader.N_process]) for j in range(reader.N_process): Q2[:, :, j] = reader.read_real(it=0, ip=j, var_name="Q")**2 print('j =', j) # t = 0
# from matplotlib import rc import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np from scipy import fftpack from read_data import ReadClass rc('text', usetex=True) rc('font', family='serif') setting_name = "setting" figure_dir = './figure/' reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) aspect = reader.read_aspect_ratio(ssh_flag=True) X, Y = reader.set_XY_axis() K0, L0 = reader.set_axis() K, L = np.meshgrid(K0, L0) c_level = 64 var_dict = {'E': 'Energy spectrum', 'P': 'Stream function', 'Q': 'Vorticity'} var = 'P' # print(X, Y)
rc('text', usetex=True) rc('font', family='serif') Fr_str = '04' # setting_name = "setting_Fr" + Fr_str setting_name = "setting_restart_Fr" + Fr_str # setting_name = "setting_restart" figure_dir = './figure_Fr' + Fr_str + '/' # setting_name = "setting" # setting_name = "setting_Dossmann_Pr1_Re40000_restart" # figure_dir = './figure_Dossmann_Pr1_Re40000/' # setting_name = "setting_Dossmann_Pr1_Re40000" # figure_dir = './figure_Dossmann_Pr1_Re40000/' reader = ReadClass() remote_data = reader.data_PID(setting_name) reader.set_ssh(remote_data=remote_data) reader.read_setting(setting_name) reader.read_file_number(ssh_flag=True) K_axis = np.linspace(0.0, reader.N_truncate, reader.N_truncate + 1) M_axis = np.linspace(0.0, reader.N_truncate, reader.N_truncate + 1) K, M = np.meshgrid(K_axis, M_axis) # line of sigma = omega / 2 M_dispersion = K_axis[:] \ * np.sqrt(reader.buoyancy_frequency**2 - reader.wave_frequency**2) \ / reader.wave_frequency M_dispersion_2 = K_axis[:] \ * np.sqrt(4 * reader.buoyancy_frequency**2 - reader.wave_frequency**2) \