def get_analysis_id(self,options): selections=""; where_clause="" if options["INSTRUMENT"]: firstpart, secondpart = add_parameters.selections_conditions("INSTRUMENT", options["INSTRUMENT"], selections); selections="," + firstpart; where_clause+=" and " +secondpart if options["PAIR"]: firstpart, secondpart = add_parameters.selections_conditions("PAIR", options["PAIR"], selections); selections="," + firstpart; where_clause+=" and " +secondpart if options["LANE"]: firstpart, secondpart = add_parameters.selections_conditions("LANE", options["LANE"], selections); selections="," + firstpart; where_clause+=" and " +secondpart if options["BARCODE"]: if os.path.exists(options["BARCODE"]): list_of_barcodes=read_file.read_file(options["BARCODE"]) else: list_of_barcodes=options["BARCODE"] firstpart, secondpart = add_parameters.selections_conditions("BARCODE", list_of_barcodes, selections); selections="," + firstpart; where_clause+=" and " +secondpart if options["SAMPLE_NAME"]: if os.path.exists(options["SAMPLE_NAME"]): list_of_samplenames=read_file.read_file(options["SAMPLE_NAME"]) else: list_of_samplenames=options["SAMPLE_NAME"] firstpart, secondpart = add_parameters.selections_conditions("SAMPLE_NAME", list_of_samplenames, selections); selections="," + firstpart; where_clause+=" and " +secondpart statement = "SELECT analysis_id FROM run WHERE " + where_clause[5:] statement = statement + " GROUP BY analysis_id" return self.execute_and_return(statement)
def test_output_1(self): out_file = 'D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB5\\out\\out1' array = read_file('D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB5\\data\\data1')[1] word_num = read_file('D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB5\\data\\data1')[0] paths = {} self.assertEqual(find_max(array, paths, out_file, word_num), 6, 'An error occurred while processing your ' 'request')
def test_output_1(self): graph = read_file( "D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB3\\resources\\data1" )[0] vertex_num = read_file( "D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB3\\resources\\data1" )[1] self.assertEqual(check_cycle(graph, vertex_num, 0), [0, 5, 10], 'An error occurred while processing your ' 'request')
def test_output_3(self): graph = read_file( "D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB3\\resources\\data3" )[0] vertex_num = read_file( "D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB3\\resources\\data3" )[1] self.assertEqual(check_cycle(graph, vertex_num, 20), [20, 127, 131, 154, 46, 70, 73, 163, 125, 98], 'An error occurred while processing your ' 'request')
def main(argv): C = read_file.read_file(argv[0]) C.pop(0) C = sp.array(C,float) density,natoms,molmass = read_file.read_file(argv[1])[0] density = float(density) # kg/m**3 natoms = int(natoms) molmass = float(molmass) # kg/mol integral = spherical_integral(C,density) # (s/m)**3 mean_vel = (integral/12./sp.pi)**(-1/3.) debeye_temp = PLANCKCONST/BOLTZCONST*(3.*natoms*AVONUM* density/4./sp.pi/molmass)**(1/3.)*mean_vel print debeye_temp,mean_vel
def main(argv): C = read_file.read_file(argv[0]) C.pop(0) C = sp.array(C, float) density, natoms, molmass = read_file.read_file(argv[1])[0] density = float(density) # kg/m**3 natoms = int(natoms) molmass = float(molmass) # kg/mol integral = spherical_integral(C, density) # (s/m)**3 mean_vel = (integral / 12. / sp.pi)**(-1 / 3.) debeye_temp = PLANCKCONST / BOLTZCONST * (3. * natoms * AVONUM * density / 4. / sp.pi / molmass)**(1 / 3.) * mean_vel print debeye_temp, mean_vel
def render_page(): my_list = read_file('tintern_abbey.txt') chain = MarkovChain(my_list) num_words = int(10) - 1 my_sentence = chain.walk(num_words) my_list2 = read_file("the_rime.txt") chain2 = MarkovChain(my_list2) num_words2 = int(10) - 1 my_sentence2 = chain2.walk(num_words2) return render_template('index.html', sentence=my_sentence, sentence2=my_sentence2)
def requests_file(): r = read_file() urls_list = r.read_urls_from_file() i = 1 for url in urls_list: r = requests.get(url, allow_redirects=True, stream=True, headers={'User-agent': 'Mozilla/5.0'}) filename = str(r.headers['Content-Disposition'][22:-1]) if r.status_code == 200: print('downloading ', filename, '...') with open(filename, "wb") as f: dl = 0 total_length = int(r.headers.get('content-length')) for data in r.iter_content(chunk_size=4096): dl += len(data) f.write(data) done = int(100 * dl / total_length) sys.stdout.write("\r[%s%s] %.2f/%.2f MB" % ('=' * done, ' ' * (100 - done), dl / (1024 * 1024), total_length / (1024 * 1024))) sys.stdout.flush() print('\nfile', filename, 'saved successfully!') print('waiting for 1 second....') time.sleep(10) i = i + 1
def change_password(ls): old_password = ls[2] flag = verify_old_password(old_password) if flag == '0': new_password = input("\nEnter the new password: "******"Out of range of try ... press Enter")
def test_minhash_with_testdata(self): sets = read_file('testdata.csv') similarity = similarity_matrix(sets, minhash_similarity) self.assertEqual(recommendations(1, sets, similarity, 0.75), {42}) self.assertFalse(recommendations(3, sets, similarity, 0.75)) self.assertEqual(recommendations(1, sets, similarity, 0.15), (sets[2] | sets[3]) - sets[1])
def get_post_by_date(self): content = self.text.get("1.0", tk.END) dateFormat = re.compile(r"\d\d\d\d.\d\d.\d\d") try: result = dateFormat.search(content).group() except: result = "xxxx.xx.xx" #print("date in text box:", result) diaryContent = "".join(read_file(self.name, False)) try: datesIn = dateFormat.findall(diaryContent) except: datesIn = [] datesIn = list(set(datesIn)) #remove duplicates datesIn.sort() startPoint = len(diaryContent) stopPoint = len(diaryContent) #print("result:", result) if result in datesIn: startPoint = diaryContent.find(result) if not datesIn[-1] == result: nextDate = datesIn[datesIn.index(result)+1] #if no duplicates and sorted it should be greater than result stopPoint = diaryContent.find(nextDate) #-6 if colored chosenDay = diaryContent[startPoint:stopPoint] #-6 if colored #print(chosenDay) self.text.delete("1.0", tk.END) self.text.insert("1.0", chosenDay) else: #print("No such date. These are availabe:\n", ", ".join(datesIn)) textData = "Available dates:\n" + ", ".join(datesIn) + "\n" self.text.delete("1.0", tk.END) self.text.insert("1.0", textData)
def shan_chu(): ''' 删除学生条目 ''' l = Rf.read_file() # print(l) sc = input('输入需要删除的学生的姓名:') for i in l: if i['姓名'] == sc: print('您要删除的是:', i['姓名'], '请确认(y/n)') qr = input() if qr == 'y': shan_chu = l.pop(l.index(i)) print('删除了:', shan_chu) # from imp import reload # reload(get_path) Wf.write_file(l, 'w') return else: print('已放弃操作') ts.tishi('即将返回目录', 4) return print('没有此人') ts.tishi('返回目录', 5)
def test_recommendations_with_zero_cutoff_returns_all_other_products(self): sets = read_file('testdata.csv') similarity = similarity_matrix(sets) for i in sets.keys(): self.assertEqual( recommendations(i, sets, similarity, 0), reduce(lambda a, b: a | b, sets.values(), set()) - sets[i])
def field_to_str(): '''(list) -> (str) Converts list into str and writes it in a file 0 is for ' ' 1 is for '*' 2 s for 'X' ''' board = read_file.read_file('field.txt') board_str1 = "" board_str = [] for i in board: if 0 in i: board_str1 += " " elif 1 in i: board_str1 += "*" elif 2 in i: board_str1 += "X" for i in range(0, 91, 10): board_str.append(board_str1[i:i + 10]) print('Do you want to see a field here', end='') print(' or you want to write it in a file field1.txt?') control = int(input('Print 1 to see a field or 2 to write in a file ')) if control == 1: for i in board_str: print(i) elif control == 2: with open('field1.txt', 'w') as file: for i in board_str: file.write(i + '\n') else: print('You are cheating!')
def withdraw(ls): current_balance = int(ls[3]) print('Your current balance: ' + ls[3]) withdraw_amount = int(input('Enter withdraw amount: ')) if withdraw_amount > current_balance: print("ERROR: You can't withdraw more than your current balance") else: current_balance -= abs(withdraw_amount) file_name = ls[0] + '.txt' process_list = read_file.read_file(file_name) id_file = open(file_name, 'a') if len(process_list) == 0: last_id = 1 else: last_id = int(process_list[len(process_list) - 1][0]) + 1 id_file.write('{0}\twithdraw\t\t\t{1}\t{2}\t{3}\n'.format( str(last_id), str(time.ctime()), ls[3], str(current_balance))) id_file.close() ls[3] = str(current_balance) print('Your current balance: ' + ls[3]) return ls
def jia_zai(): jia_zai_f = tkinter.filedialog.askopenfilename(title='选择加载的文件', filetypes=[('TXT格式', '.txt') ]) if jia_zai_f == (): print('已取消') else: fn = os.path.basename(jia_zai_f) #截取文件名 r_path = os.path.dirname(jia_zai_f) #截取文件所在文件夹名称 local_path = os.getcwd() #获取本地文件夹 f_local = fn + local_path print(jia_zai_f) Tisi.tishi('读入中', 1) sfp.safe_file_path(fn, r_path) from imp import reload reload(read_file) ld = read_file.read_file(jia_zai_f) if ld is None: return else: print('数据文件切换成功!即将退出系统,请重新进入系统查看和删改!') Tisi.tishi('正在关闭系统...', 2) sys.exit()
def change_password(ls): # Get the old password old_password = ls[2] # Ask to old password to enter new one flag = gate_x(old_password) # Security flag get the output flag if flag == '0': new_password = input("\nEnter the new password: "******"Out of range of try ... press Enter")
def get_bands(): control_raw, patient_raw, channel_names = read_file.read_file() control_res = [] count = 0 for (eid, raw) in control_raw.items(): temp = handle_raw(raw) if temp is None: print('too large') continue control_res.append(temp) print('control: ' + str(count)) count += 1 patient_res = [] count = 0 for (eid, raw) in patient_raw.items(): temp = handle_raw(raw) if temp is None: print('too large') continue patient_res.append(temp) print('patient: ' + str(count)) count += 1 return control_res, patient_res
def deposit(ls): current_balance = int(ls[3]) print('Your current balance: ' + ls[3]) deposit_amount = int(input('Enter the amount to deposit: ')) current_balance += abs(deposit_amount) file_name = ls[0] + '.txt' process_list = read_file.read_file(file_name) id_file = open(file_name, 'ab') if len(process_list) == 0: last_id = 1 else: last_id = int(process_list[len(process_list) - 1][0]) + 1 id_file.write(('{0}\tdeposit\t\t\t\t{1}\t{2}\t{3}\n'.format(str(last_id), str(time.ctime()), ls[3], str(current_balance))).encode('utf-8')) id_file.close() ls[3] = str(current_balance) print('Your current balance: ' + ls[3]) return ls
def deposit(ls): # ls is a list of the information of the account # ls elements are of type string # ls[0] id # ls[1] name # ls[2] password # ls[3] balance current_balance = int( ls[3]) # make changes to another variable to keep the previous balance # to print it later, then save ls[3] = current_balance print('Your current balance: ' + ls[3]) deposit_amount = int(input('Enter deposit amount: ')) current_balance += abs(deposit_amount) # to guarantee the entered value file_name = ls[0] + '.txt' process_list = read_file.read_file(file_name) id_file = open(file_name, 'a') if len(process_list) == 0: # if there are no processes in the file last_id = 1 else: last_id = int(process_list[len(process_list) - 1][0]) + 1 # get last id and increment it id_file.write('{0}\tdeposit\t\t\t\t{1}\t{2}\t{3}\n'.format( str(last_id), str(time.ctime()), ls[3], str(current_balance))) # write-> process_id process_name process_date_and_time before_process after_process id_file.close() ls[3] = str(current_balance) print('Your current balance: ' + ls[3]) return ls
def test_output_2(self): order_list = [] graph = read_file("D:\\Projects\\Data-Structures-and-Algorithms-Uni\\LAB4\\resources\\data2") visited = {k: False for k in graph} self.assertEqual(dfs("visa", graph, visited, order_list), ['foreignpassport', 'visa'], 'An error occurred while processing your ' 'request')
def main(): positions_file = "Positions - Performance.txt" image_filepath = "C:\\Users\\Joshua\\Documents\\Development\\FIFAStats\\Pictures - Performance\\Mason.jpg" image = Image.open(image_filepath) scores = read_file(positions_file) indi_image(image, scores)
def test_asymmetric_similarity_returns_superset_of_jaccard(self): sets = read_file('testdata.csv') similarity1 = similarity_matrix(sets) similarity2 = similarity_matrix(sets, asymmetric_similarity) for i in sets.keys(): self.assertTrue( recommendations(i, sets, similarity1, 0.25).issubset( recommendations(i, sets, similarity2, 0.25)))
def __init__(self, word_list): self.histogram = {} self.text = read_file("tintern_abbey.txt") self.word_list = word_list self.dictionary_histogram = self.build_dictogram() self.tokens = sum(self.dictionary_histogram.values()) self.types = self.unique_words()
def load(self): """ Load data from mongodb. INPUT: None. OUTPUT: None. """ #self.df = read_file("../data/yelp_academic_dataset_user.json") #Full Data. self.df = read_file("../data/user300.json") #For local machine.
def main(): """ 主函数 """ info = read_file.read_file("mission.txt") currency = translate_to_roman_numerals.translate_to_roman_numerals(info) get_price = price.cal_unit_price(info, currency) answers.get_answers(info, currency, get_price)
def main(): """ 主函数 """ info = read_file.read_file("mission.txt") currency = translate_to_roman_numerals.translate_to_roman_numerals(info) get_price = price.cal_unit_price(info, currency) answers.get_answers(info,currency,get_price)
def map(fi_name): matrix = read_file(fi_name) print('start mapping...') print('...') map_matrix = {} for e in matrix: map_matrix[e] = exp_map(matrix[e]) print('mapping finished.') return map_matrix
def train(self, training_data_file): self.train_file_str = read_file(training_data_file) self.train_pfs = preprocess_line(self.train_file_str) self.train_counts = count_ngrams(3, self.train_pfs) self.train_discounts = gt_discount(self.train_counts) self.train_probs = estimate_probs(self.train_discounts) write_file(self.train_probs)
def generate_sentence(): my_file = read_file("tintern_abbey.txt") my_histogram = histogram(my_file.split("\n")) sentence = "" num_words = 10 for i in range(num_words): word = random_word(my_histogram) sentence += " " + word return sentence
def calculate_library_weight_main(): final_list = [] meta_data = read_file("input/d_tough_choices.txt") scanned_books = {} libraries = meta_data[4] num_days = meta_data[2] while libraries and num_days: libraries, num_days, final_list = calculate_scores(libraries, num_days, final_list) return final_list
def main(): content = read_file() bn = BayesNet(content) # for node in bn.nodes: # print(node) # X = 'G' # e = {'O': True, 'A': True, 'X':True, 'N': True, 'H':True} # # print(markov_blanket_sample(X, e, bn)) # print(gibbs_ask(X, e, bn, 100)) print(bn.markov_blanket('A'))
def read_table(current_path): # Input File input_file_path = os.path.join(current_path, "TableA.txt") print(input_file_path) # Read File name, f = read_file(input_file_path) return name, f
def get_analysis_id(self, options): selections = "" where_clause = "" if options["INSTRUMENT"]: firstpart, secondpart = add_parameters.selections_conditions( "INSTRUMENT", options["INSTRUMENT"], selections) selections = "," + firstpart where_clause += " and " + secondpart if options["PAIR"]: firstpart, secondpart = add_parameters.selections_conditions( "PAIR", options["PAIR"], selections) selections = "," + firstpart where_clause += " and " + secondpart if options["LANE"]: firstpart, secondpart = add_parameters.selections_conditions( "LANE", options["LANE"], selections) selections = "," + firstpart where_clause += " and " + secondpart if options["BARCODE"]: if os.path.exists(options["BARCODE"]): list_of_barcodes = read_file.read_file(options["BARCODE"]) else: list_of_barcodes = options["BARCODE"] firstpart, secondpart = add_parameters.selections_conditions( "BARCODE", list_of_barcodes, selections) selections = "," + firstpart where_clause += " and " + secondpart if options["SAMPLE_NAME"]: if os.path.exists(options["SAMPLE_NAME"]): list_of_samplenames = read_file.read_file( options["SAMPLE_NAME"]) else: list_of_samplenames = options["SAMPLE_NAME"] firstpart, secondpart = add_parameters.selections_conditions( "SAMPLE_NAME", list_of_samplenames, selections) selections = "," + firstpart where_clause += " and " + secondpart statement = "SELECT analysis_id FROM run WHERE " + where_clause[5:] statement = statement + " GROUP BY analysis_id" return self.execute_and_return(statement)
def train(self, training_data_file): self.train_file_str = read_file(training_data_file) self.train_pfs = preprocess_line(self.train_file_str) self.train_counts = count_trigrams(3, self.train_pfs) ans = raw_input("Smooth the counts? [y/n]") if ans.lower() == 'y': self.train_discounts = gt_discount(self.train_counts) self.train_probs = estimate_probs(self.train_discounts) else: self.train_probs = estimate_probs(self.train_counts) write_file(self.train_probs)
def glitch_1(input_path, output_path="test_folder"): files = read_file(output_path, input_path, True) f = files[0] new_f = files[1] count = 0 for line in f: temp = line if count > 20 and count % 20 == 0 and random.randint(1, 10) > 9: if random.randint(1, 10) < 8: temp += temp else: temp = temp[random.randint(0, len(temp)):random.randint(0, len(temp))] new_f.write(temp) count += 1
def process_des(filename, key, encryption): input_blocks = read_file(filename, encryption) # Return error if file is empty if not input_blocks: return 'file_empty_error' if input_blocks == 'not_encrypted_file': return 'not_encrypted_file' keys = keygen(key) if encryption: # Convert each block to binary if operation is encryption. input_blocks = [string_to_bin(x) for x in input_blocks] # Pad zeroes to the end, if last block has less than 64 bits. if len(input_blocks[-1]) < 64: input_blocks[-1] += '0' * (64 - len(input_blocks[-1])) if not encryption: # Reverse the key schedule if operation is decryption. keys = list(reversed(keys)) encoded_text = '' for block in input_blocks: encoded_text += fiestel(block, keys) if encryption: # Return cipher text as binary. return encoded_text else: # Remove padded zeroes if any. for i in range(64, 0, -8): if encoded_text[-8:] == '0' * 8: encoded_text = encoded_text[:-8] else: break # Convert binary to normal string. return bin_to_string(encoded_text)
for each in check_list: args.append(options[each]) reports = Reports.Reports(config);tables=reports.get_samples_from_run_lane_barcode(args); display_outputs(tables) else: print "You have not supplied one of the option parameter. Make sure you supplied parameters for all of these : ", ",".join(check_list) exit(1) elif options["get_analysis_id"]: check_list=["INSTRUMENT", "RUN", "LANE", "PAIR", "SAMPLE_NAME", "BARCODE"] #supply at least one or all of these options reports = Reports.Reports(config);tables=reports.get_analysis_id(options); display_outputs(tables) elif options["get_properties_for_analysis_ids"]: if options["ids"]: if os.path.exists(options["ids"]): list_of_ids=read_file.read_file(options["ids"]) else: list_of_ids=options["ids"] reports = Reports.Reports(config);tables=reports.get_properties_for_analysis_ids(list_of_ids); display_outputs(tables); reports.disconnect() else: print "Please provide a list of analysis ids which you wish to get the properties" exit(1) elif options["get_barcodes_for_sample_name"]: if options["SAMPLE_NAME"]: if os.path.exists(options["SAMPLE_NAME"]): #read the file list_of_samplenames=read_file.read_file(options["SAMPLE_NAME"]) selections, where_clause=add_parameters.selections_conditions("sample_name", list_of_samplenames, "") else: selections, where_clause=add_parameters.selections_conditions("sample_name", options["SAMPLE_NAME"], "")
def test(self, test_data_file): self.test_file_str = read_file(test_data_file) self.test_pfs = preprocess_line(self.test_file_str) self.test_counts = count_trigrams(3, self.test_pfs) self.perplexity = calc_perplexity(self.test_counts, self.train_probs)
parser.add_argument("--softening",type=int,default=0, help="softening constant") # parser.add_argument("-o","--outfile",type=argparse.FileType('w'), # help="save results to file, '-' is stdout") parser.add_argument("--energy",action="store_const",const=Energy(), help="calculate and plot the energy of the system") parser.add_argument("--period",type=int,metavar="i",nargs="?",const=1, help="calculate and output the orbtal period of body i") parser.add_argument("--maxpoints",type=int, help="maximum plotted line length in data points") parser.add_argument("file",nargs="+", help="files containing the mass," " initial position and velocity of the bodies") args = parser.parse_args() m,x,v,names,styles = read_file(args.file) # change the position and velocity of the Sun so that # the centre of mass is stationary and at the origin x[0] = -numpy.sum(x[1:]*m[1:,numpy.newaxis],axis=0)/m[0] v[0] = -numpy.sum(v[1:]*m[1:,numpy.newaxis],axis=0)/m[0] solar_system = N_bodies(m,x,v,args.dt,args.softening) v = solar_system.v_correction() dt = args.dt t = args.time pr = None # pr = printer() # for solar velocity print out if args.graph: plot = Plotter(dict(zip(names,styles)),axis=[-9e11,9e11,-9e11,9e11],position=111)
def translate_to_roman_numerals(info): """ 转义为罗马数字模块 提取输入信息中对星际货币与罗马数字的转换信息 """ translate_to_roman=[[],[],[],[],[],[],[]] currency={} for key,value in info.items(): if(key=='condition_roman'): for index,number in enumerate(value): translate_to_roman[index]=number.split() for i in translate_to_roman: if i: currency[i[0]]=i[2] return currency if __name__ == "__main__": info = read_file.read_file() translate_to_roman_numerals(info)
def test_read_file(): """Assert the correct return value from the function read_file().""" assert read_file('test_read_file.txt') == """ABCDEFGHIJKLMNOPQRSTUVWXYZ?
from Problem import Problem from solver_vertical_motion import Solver from read_file import read_file from scitools.std import plot from numpy import linspace, array, zeros import sys v0 = 0 T = 100 dt = 0.01 N = int(T/float(dt)) parameters = read_file(sys.argv[1:]) problem = Problem(parameters) problem.set_initial_condition(v0); c = Solver(problem) c.set_timestep(dt) v = c.solve(T) v = array(v) F_d = zeros(N) for i in range(N): F_d[i] = problem.get_drag_force(v[i]) F_g = zeros(N) + problem.get_gravity_force() F_b = zeros(N) + problem.get_buoyancy_force() time = linspace(0,dt*N,N); plot(time,F_d,time,F_g,time,F_b, legend=['drag','gravity','buoyancy'])
""" S_vib = 4*debye_func(thetaD/T)-3*sp.log(1-sp.exp(-thetaD/T)) S_vib = natoms*BOLTZCONST*S_vib return S_vib def debye_C_V(T,thetaD,natoms): """ Returns the heat capacity at constant volume, C_V, of the Debeye model at a given temperature, T, in meV/atom/K. """ C_V = 4*debye_func(thetaD/T)-3*(thetaD/T)/(sp.exp(thetaD/T)-1.) C_V = 3*natoms*BOLTZCONST*C_V return C_V if __name__ == "__main__": thetaD,natoms = read_file.read_file(sys.argv[1])[0] thetaD = float(thetaD) natoms = int(natoms) temp = sp.linspace(0,2000,201) temp[0] = 1.0 #reduced_temp = thetaD/temp E_zp = 9*natoms*BOLTZCONST*thetaD/8. #E_zp = 9*BOLTZCONST*thetaD/8. E_vib = sp.array([]) S_vib = sp.array([]) C_V = sp.array([]) for T in temp: D = debye_func(thetaD/T) E_vib = sp.append(E_vib,natoms*BOLTZCONST*(E_zp + 3*T*D)) #E_vib = sp.append(E_vib,BOLTZCONST*(E_zp + 3*T*D)) S_vib = sp.append(S_vib,natoms*BOLTZCONST*(4*D -
#!/usr/bin/env python import read_file import parse_prop import get_snpcount import add_seq import append import integrate import add_to_db import run_struct import get_sites file = integrate.integrate() df = read_file.read_file(file) new_df = parse_prop.parse_prop(df) #kage = get_snpcount.enough_info(file) str = append.append(new_df) sites, indices = get_sites.get_sites(new_df) #add_to_db.add_to_base(kage,df) run_struct.call_structure(sites, indices)